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1.0 Introduction 
This paper reviews recent work on the properties of Tsallis distributions, Tsallis 
statistics, anomalous diffusion and multi-fractal processes.  Processes of this kind 
have the capacity to represent natural phenomena that are associated with turbulence 
and emerging complexity. However, in addition they may also capture crucial aspects 
of human decision-making in response to conditions of uncertainty. This leads to the 
obvious question of the inter-relationship between each of these two fields: the 
behavioural and the empirical. The Tsallis or q-exponential distribution describes both 
an Ontological property (i.e. an empirical characterisation of existing stochastic 
processes such as wind turbulence, river flooding, rainfall, asset prices, transport 
through doped media, DNA sequencing, the arrival of news within information 
networks etc); and an Epistemic attribute (i.e. a behavioural characterisation of 
decision-making as seen in generalisations of subjective expected utility designed to 
account for investor aversion to ambiguity or uncertainty). The paper articulates the 
linkages between the property of non-extensivity possessed by generalised 
information measures such as Tsallis entropy, S-shaped distortion functions that are 
commonly applied in the actuarial sciences, coherent risk measures discussed in the 
finance literature, and what is called Choquet expected utility theory in the economics 
literature.  

 

The dual characterisation of the Tsallis distribution raises broader questions about the 
linkage between both the ontological and epistemic domains. In previous research 
Juniper (2005) has attempted to explain this linkage by arguing that an increasing 
fragility of real world phenomena would give rise to a heightened aversion to 
ambiguity on the part of decision makers. This is because fragility implies an 
increased sensitivity of the economy to adverse conditions. It is this increase in 
sensitivity that leads to a heightening of uncertainty aversion on the part of decision 
makers. Arguably, this kind of ontologico-epistemic interaction could be responsible 
for many of the reported ‘self-fulfilling prophecy’ phenomena in both economics and 
finance. In this regard, the very nature of the stochastic processes governing risk 
would, themselves, influence these adverse conditions. For example, stochastic 
processes conforming to Tsallis Distribution, Mandelbrot’s multifractal processes or 
Lévy-Stable Laws give rise to more extreme tail probabilities in comparison with 
Geometric Brownian motion, which would increase estimates of value-at-risk.  

 

The next section of the paper examines the distinction between uncertainty and risk. It 
then considers the distinction post-Keynesian theorists have attempted to make 
between aversion to uncertainty and aversion to risk. In an effort to dig deeper into 
these distinctions, the next section of the paper reviews a comprehensive study by 
Van der Lubbe et al. (1984), which adopts an information theoretic approach to the 
derivation of generalised measures of uncertainty. Three families of uncertainty 
measures are constructed which encompass almost all of the information measures in 
common usage, including Tsallis entropy. The property of non-extensivity or pseudo-
additivity is also introduced in this section of the paper. Section 3 of the paper 
provides an overview of the q-algebra that is associated with Tsallis entropy and the 
related Tsallis distribution. It reviews recent research, which has deployed the q-
generalised exponential and logarithmic functions to establish a generalisation of the 
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Lévy-Gnedenko central limit theorem. Sub-section 3.1 draws from what is now an 
extensive literature, some of the more pertinent relationships between Tsallis entropy, 
statistical distributions, and stochastic processes. Section 4 of the paper returns to 
examines the property of non-extensivity, which is associated with the hyperbolic 
family of generalised uncertainty measures, including Tsallis entropy. While section 
4.1 highlights the relationship between non-extensivity, Kahneman and Tversky’s 
notion of Bounded Sub-additivity and Uncertainty Aversion in decision-making; 
section 4.2 examines the relationship holding between non-extensivity, Coherent Risk 
Measures, and the S-shaped distortion functions that arise in both the actuarial 
analysis of risk and in economic applications of Choquet expected utility theory. 
Section 5 of the paper interrogates the linkage between sub-additive probabilities and 
multiple-priors approaches to robust control and estimation. This sets the scene for a 
series of speculations on the nature of human cognition, the evolution of pattern-
recognition capabilities, which respond to the fractal geometry of nature, and 
uncertainty aversion in human decision-making. These speculative forays informs the 
analysis of section 6, which draws together strands of analysis taken from other 
sections of the paper to embark on a Keynesian and Minskyian critique of quantitative 
finance theory. Concluding comments follow in section 7. 

2.0 Uncertainty Aversion and Risk Aversion 
In Book V of The General Theory Keynes argued against the then-dominant Treasury 
view that wage and price deflation would automatically cure any departures from full 
employment through increases in expenditure induced by falling real interest rates and 
continuously falling prices. Instead, Keynes emphasised the adverse impact of wage-
price deflation on both the marginal efficiency of capital schedule, the precautionary 
demand for money, and the marginal propensity to consume (via shifts in income 
from high spending borrowers to low spending lender triggered by deflation under a 
regime of non-indexed, nominal contracting). However, the concerns of this paper are 
more broadly focused on the increased sensitivity of the economy (as reflected in the 
balance sheet positions of key decision-makers—households, banks and firms) to 
adverse changes in sentiment (i.e. increasing aversion to uncertainty or ambiguity). 

 

While an increasing number of macroeconomists and quantitative finance theorists 
(including Hansen et al, 2002) are now willing to distinguish between aversion to risk 
and aversion to ambiguity or uncertainty, there are no doubt many who continue to 
hold to an outdated, rational expectations-informed position that the subjective 
probabilities reflecting aversion to risk could ultimately converge to objective 
probabilities. For the latter group of theorists, convergence would arise either through 
some kind of learning process, or rather through processes of evolutionary selection 
advantaging those agents who adopt more rational mechanisms in forming their 
expectations.  

 

Amongst heterodox theorists a more commonly held position would be that 
comprehensive information that would enable economic agents to predict future by 
means of frequency distributions does not exist due to the inherent creativity and 
unpredictability of human interventions that can transform institutions, introduce new 
products and services, and develop new ways of doing things (Dequech, 2000). As 
such, over varying time horizons and in various combinations, innovative forms of 



 4 

social interaction would transform the stochastic processes characterising economic 
phenomena. Accordingly, any attempts by theorists to formalize models of 
uncertainty aversion, that could in turn inform policy interventions, are dismissed as 
the economic equivalent of “paddling a canoe with a butterfly net”.2

 

  

In contrast to such forms of heterodox skepsis, this paper sees virtue in the 
development of formal models of uncertainty aversion that could inform prudential 
control and policies designed to offset the damaging consequences of the business 
cycle. Accordingly, the next section of the paper begins with an outline of generalized 
information measures that could serve as an integrative framework for further inquiry 
into the nature of uncertainty aversion. It will be shown that these measures, while 
conforming to Kolmogorov’s axioms of probability, are sufficiently general to 
account for complex, multifractal stochastic processes. 

 

2.1 Generalised Uncertainty Measures 
In a discrete probability setting Van der Lubbe et al. (1984), demonstrate the existence 
of three families of information measures based on the relation between information 
and certainty rather than on the conventional mode of derivation, which is based on 
the relation between information and uncertainty. Thus, each information measure is 
constructed from two certainty measures, each of which conforms to a set of desirable 
formal properties. From the resulting certainty measure the authors derive a strictly 
monotonic, continuous measure of average certainty.  This enables the authors to 
derive (van der Lubbe et al., 1984, definition 2: 197) three general classes of 
information measures for parameters (ρ, σ, δ) ∈ E = {{ρ, σ, δ(ρ, σ) ∈ D ∧ δ > 0}: 
 

a) the logarithmic information measure given by, 
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c) the hyperbolic information measure given by, 
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It can be seen that each of these measures operates with a different formal 
representation of uncertainty, where the latter defined in relation to average certainty 
(i.e. the summation term appearing in the square brackets and raised to the power of 
                                                 
2 This metaphor was conveyed to the author in an email by Professor Paul Davidson in a critique of the 
author’s earlier attempts to develop a formal model of Keynesian liquidity preference. 
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σ).  Next, van der Lubbe et al. (1984, theorem 4: 201-202) establish conditions that 
such information measures, H(X), should satisfy—namely: non-negativity, continuity, 
strict monotonicity H(P) = I[f(P)] ≥ 0 of the information measure; and for 
stochastically independent experiments P and Q, that H(PQ) = H(P) + H(Q) +c H(P)⋅ 
H(Q)—which enables them to determine non-trivial solutions for the measure: 

c = 0 for 1Hn,  with ρ = ab + 1, σ = 1/b,and (ρ, σ, δ) ∈ E; 

c < 0 for 2Hn,  with δ = -1/c, ρ = ab + 1, σ = 1/b, and (ρ, σ, δ) ∈ E; 

c > 0 for 3Hn,  with δ = 1/c,  ρ = ab + 1, σ = d/b, with d > 0, and (ρ, σ, δ) ∈ E. 
 

Moreover, van der Lubbe et al (2001: 204) show that the following relations obtain 
between each of the measures, 

 

( ) ( )

( ) ( )
( )δσρ

δσρδ
δσρ

δ
δσρ

δδσρ

,,;
,,;

,,;

,
,,;

1log,,;

3

3
2

2

2
1

PH
PH

PH

PH
PH

n

n
n

n
n

=









−−=

 

A variety of minor theorems and corollaries then establish the properties of these 
information measures. 1Hn is Rényi entropy with ρ = α, σ = 1/(α - 1), δ = 1. 2Hn is 
Havrda and Charvat or Daroczy entropy for ρ = β > 0, β ≠1, σ = 1, δ = 1/(1 – 21 -β). 
The Sharma and Mittal Information measure of order α and type β results for 2Hn with 
ρ = α, σ = (β -1)/(α - 1), δ = 1/(1 - 21 -β). Arimoto’s R-norm results when ρ = R, σ = 
1/ρ, δ = R/(R – 1). Lansberg’s entropy measure results from 2Hn  when ρ = q, σ = -1, 
and δ = 1/(1 – q). Finally, Tsallis entropy can be derived from van der Lubbe et al’s 
hyperbolic 3Hn information measure through the substitutions: ρ = q, σ = -1, δ = 1/(1 
– q), as noted by Tsallis (1995). 

 

From the second class of certainty measures the authors derive two additional families 
of information measures given by, 
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The first of these is identical to that of Shannon Entropy up to a constant, while the 
second includes Leti’s measure of relative diversity. 

 

Van der Lubbe et al’s (2001: 194) paper has noteworthy implications. Associated with 
the three families of information statistics are three related forms of expectation 
operator. A unique version of probabilistic analysis can be constructed for each class 
of expectations operator without the necessity for any resort to measure theory. 
Accordingly, the theorist is able to choose the particular class of analysis that is most 
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appropriate for his or her specific inquiry. One example of this is the class of 
probability theory pertaining to non-extensive statistical mechanics. Non-extensivity, 
often termed pseudo-additivity, can take a super- or sub-additive form. It is defined by 
non-zero values of c in the relationship that is presumed to obtain between 
information measures defined over statistically independent distributions P and Q. 
This relationship (reproduced for convenience below) relates the measure of the joint 
distributions to their individual and marginal distributions, 

 

H(PQ) = H(P) + H(P) +c H(P)⋅ H(Q).  
 

Here the c parameter embodies the property of global correlation between 
independent distributions. In the development of non-extensive statistical mechanics 
both Rényi and Tsallis entropy have played a dominant role. The following section of 
the paper first discusses the properties of Tsallis entropy, its supporting axioms, and 
their relationship to Lévy processes, before examining the implications of the property 
of pseudo-additivity for decision-making under uncertainty. 

 

3.0 The q-algebra and the q-generalised Central Limit Theorem 
In explicating the properties of what is now commonly referred to as the q-algebra, 
Suyari (2004) reveals what he describes as the underlying beauty and simplicity of the 
mathematical processes that result in the Tsallis distribution. Suyari (2004:2) begins 
by defining the q-product as follows, 
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Following Tsallis (1994), Suyari introduces the q-logarithmic and q-exponential 
functions defined below, 
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On the basis of these definitions the q-product satisfies the following: 
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The q-exponential function can be derived in a manner analogous to that for the 

conventional exponential function (i.e. ( )
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The q-sum of two real numbers, which is commutative, associative, and recovers the 
conventional summation operation when q = 1, is defined by the following, 

( )xyqyxyx q −++=⊕ 1  . 

By inversion, q-subtraction, which is also commutative, associative, and recovers the 
conventional summation operation when q = 1, can be defined as, 
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This q-algebra plays a crucial role in the burgeoning field of Tsallis statistics. For 
example, Suyari and Tsukada (2005) demonstrate that the Tsallis distribution, 
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can be derived by taking the maximal value of the q-product of the likelihood 
function, Lq (θ), shown below, 
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Suyari shows that the q-product can also be applied in deriving the q-Sterling’s 
formula for the q-factorial n!q for n ∈ N and q > 0 (Suyari, 2004:5), 
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The Central Limit Theorem (CLT) implies that any sum of N independent random 
variables will tend, as N →∞, to be distributed according to a certain law (which 
operates as an attractor in the space of distributions. When the distribution of the 
individual random variables has finite variance the asymptotic distribution for the sum 
will be the Normal or Gaussian distribution. In the de Moivre-Laplace theorem it is 
demonstrated that asymptotically, as N →∞,  the Binomial distribution approaches a 
Gaussian distribution. The Lévy-Gnedenko-Kolmogorov generalisation of the CLT 
states that the asymptotic distribution of the sum of N independent, infinite-variance 
random variables will be the Lévy distribution. Suyari (2004) deploys his q-
logarithmic generalization of Sterling’s formula to establish numerical indications of 
the limiting properties of generalized q-binomial and q-multinomial models, showing 
that in each case, they converge to the Tsallis distribution. 

 

In the literature on a q-algebra there is a natural progression from the q-arithmetic (the 
q-sum, q-subtraction, q-product and q-division) through to the hyperbolic functions 
such as the q-logarithm and q-exponential. It is then only a small step to the 
construction of a q-generalisation of the Fourier transform. It is this version of the 
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Fourier transform, that Umarov, Tsallis, Gell-Mann and Steinberg (2006a,b) deploy to 
accomplish their generalization of the Lévy-Gnedenko central limit theorem. An 
approach of this kind was inevitable given earlier research highlighting numerical 
indications of a q-generalised central limit theorem, and the fact that the original 
Lévy-Gnedenko version of the central limit theorem was originally conceived and 
executed entirely within the frequency- rather than the time-domain using the Fourier 
transform. 

3.1 Tsallis Entropy and Stochastic Processes 
While Boltzmann-Shannon-Gibbs (BSG) entropy is defined by (Abe, 2000): 
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In this generalization of BSG-entropy, the q parameter represents the degree of 
nonextensivity. Tsallis’s nonextensive measure meets Kapur and Kesavan’s 
requirements for a generalized measures of cross entropy (1994:309-15). In section 
2.1 it was shown that Tsallis entropy could be derived from van der Lubbe et al’s 
hyperbolic 3Hn information measure through the substitutions: ρ = q, σ = -1, δ = 1/(1 
– q), as noted by Tsallis (1995). 

 

Tsallis entropy provides a useful ansatz for the calculation of solutions to certain 
nonlinear partial differential equations. Moreover, under appropriate constraints the 
maximization of Tsallis entropy also yields exact time-dependent solutions for a 
family of non-linear Fokker-Planck equations representing anomalous diffusion and 
certain self-organizing phenomena (Tsallis, 1995; Tsallis et al., 1998). These 
equations are characterized by a diffusion term depending on the power of the 
probability density. Under equiprobability, 

.lnmax WkSS qqq ==  

 

In the 20s and 30s, Lévy was concerned with the question of how to represent a 
situation of fractal scaling where the sum of identically random distributed variables 
has the same probability distribution as any one of the terms in the sum. The resulting 
distributions are now called Lévy’s stable laws (Shlesinger et al., 1987, p. 1100). 
Drawing on initial work by Sainty (1992), Jumarie (2000, Chapters 6 and 7) sets out a 
mathematically simpler construction of complex-valued fractional Brownian motion 
(C-(fBm)n), conceived as the limit of random walks in the complex plane. 

 

In contrast to a conventional random walk, for which large step lengths are 
(exponentially) rare, a Lévy flight is a random walk whose step length occurs with a 
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power law frequency (Gupta & Campanha, 2002, p. 531). Thus Lévy flights have 
infinite variance. In real systems the variance of a stationary process is finite. 
Therefore, to describe such systems using Lévy flight processes, some kind of 
arbitrary cut-off must be imposed. Early research in this vein by Mantegna and 
Stanley (1995) deployed a truncated Lévy flight process.  More recent developments 
(Gupta and Campanha, 2000, 2002) allow for the gradual elimination of large step 
sizes by using an exponential, capacity-related, cut-off term. The resulting gradually 
truncated Lévy distributions (GTLDs) approach the Gaussian distribution at relatively 
low-frequencies, but at high frequencies gives rise to a power-law distribution. 

 

Montroll and Schlesinger (1983: 215) have shown that Lévy processes can be derived 
from maximizing Shannon-Boltzmann entropy under the usual normalisation 
condition if the following moment constraint is imposed, 
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However, they acknowledge that “it is difficult to imagine that anyone in an a priori 
manner would introduce” a condition of this nature for maximising entropy3

While GTLDs are based on positive feedback and physical limitations, Tsallis 
statistics are based on generalized thermodynamic considerations. Nevertheless, both 
statistics yield almost the same distribution. For this reason, Gupta and Campanha 
(2002, p. 385) speculate that the parameters of the GTLD are related to the q 
parameter because the limit that arises is due to similar thermodynamical or other 
natural requirements.  

. Indeed, 
Tsallis (1995) uses this presumption to justify his favoured approach based on 
generalised entropy. 

 

For statistically independent systems A and B, under Tsallis entropy, it is well known 
that pseudoadditivity obtains (which is congruent with the findings of Lubbe et al, 
2001, discussed in section 2.1 of the paper), namely: 

[ ] [ ] [ ] ( ) [ ] [ ]BSASqBSASBAS qqqqq −++= 1,  (see Di Sisto et al, 1999)4

Another characterization, which obtains for a partition of this probability space into 
two segments, one for low valued probabilities (summing to pL) and the other for high 
valued probabilities (summing to pM), of pseudoadditivity for systems A and B is: 

. 

                                                 
3 This moment constraint is related to the Fourier transform of the Lévy distribution which reads, 

( ) ( ) ( ) ( )γbkdpip −=⋅= ∫ expexp xxxkk , 

where b is a positive constant and k ≡ k. It is this transform, which Lévy used to define the 
distribution named after him, that is responsible for the self-similarity property of the distribution, 
because it converts the convolution of two Lévy distributions with the same exponent into a third Levy 
distribution with the same exponent (Zanette, 1999): 

( ) ( ) ( ) ( ) ( )[ ] ( )kpkbbkbkbkpkp 3212121 expexpexp =+−=−−= γγγ . 
4 Compare this result with van der Lubbe et al’s theorem four. 
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events while subadditivity privileges frequent events (Tsallis et al, 1998, p.535). 
Although pseudo-additivity is familiar to theoretical physicists, important applications 
have also arisen in quantitative finance and the theory of decision-making under 
uncertainty (see Schmeidler, 1989). These applications will be examined in section 4 
of the paper. 

 

Abe (2000) shows how the Shannon-Khinchin axioms for Boltzmann-Shannon 
entropy can be modified to accommodate Tsallis entropy. His paper establishes that a 
quantity satisfying the transformed axioms is uniquely equal to Tsallis entropy. Thus, 
his uniqueness result represents a natural generalization of the Shannon-Khinchin 
result for Boltzmann-Shannon entropy by establishing a parallelism with the original 
axioms. Tsallis et al (1995) argue that the ubiquity and robustness of the Lévy 
distribution follow naturally from the generalized central-limit theorem, which applies 
to convolutions of distributions. Significantly, they further demonstrate that that 
Tsallis entropy generalizes the traditional inverse relationship known to hold between 
Boltzmann-Shannon entropy and the exponential function. 

 

Abe (1997) shows that Tsallis entropy can be interpreted using Jackson’s generalized 
differential operator. While Jackson’s operator “tests” the function f(x) under dilation, 
the usual derivative tests it under translation. This feature explains the usefulness of 
Tsallis entropy for describing chaotic systems with multifractal characteristics5

                                                 
5 Jackson’s generalized differential operator, Dq, defined for an arbitrary function f(x) is given by: 

. 
Under appropriate moment constraints over the first and second moments of the 
distribution, Boltzmann-Shannon entropy can be used to derive the familiar Gaussian 
process. However, under slightly modified moments constraints (which take into 
account the divergence of the second moment), De Souza and Tsallis (1997) also 
show that Tsallis entropy can be used to derive the Students-t distribution. Similarly, 
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Abe and Turner (2005) show how the assumptions made by Einstein in his classic 
derivation of Brownian motion can be relaxed (specifically, the assumption relating to 
the existence of the second moment of the distribution is replaced by one assuming 
that the distribution has a divergent second moment whose characteristic function is 
given by a ‘stretched exponential form’), so that the solution to the diffusion equation 
(obtained using the techniques of fractional calculus) meets the defining 
characteristics of the Lévy distribution. 

  

4.0 Non-extensivity 
This section of then paper re-examines the property of non-extensivity, which is 
associated with the hyperbolic family of generalised uncertainty measures, including 
Tsallis entropy. Specifically, section 4.1 highlights the relationship between non-
extensivity, Kahneman and Tversky’s notion of Bounded Sub-additivity and 
Uncertainty Aversion in decision-making. Section 4.2 examines the relationships 
between non-extensivity, Coherent Risk Measures, and the S-shaped distortion 
functions that arise in both the actuarial analysis of risk and in economic applications 
of Choquet expected utility theory. 

 

4.1 Bounded Sub-additivity and Uncertainty Aversion  
Significantly, Tsallis et al (2003) comment on the relationship between the property of 
pseudoadditivity and Cumulative Prospects Theory (CPT)—Kahneman and Tversky’s 
model of non-expected utility. The authors also cite Dow and Werlang’s work on 
Choquet Expected Utility Theory in Tsallis (1995)6

 

.  

Anteneodo and Tsallis (2003) acknowledge this generalization of Prospect theory to a 
rank-dependent utility form, which entails an S-shaped distortion of the cumulative 
distribution function. However, because their paper only considers simple prospects 
with a single positive outcome, the specific role of Choquet Integration is not clarified 
or expounded. This simplification allows them to consider a variety of straightforward 
functional forms in calculating q-expectation values, including: 
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Queirós, Anteneodo, and Tsallis (2005: equations 5 and 6) note that similar functional 
forms appear in the moment constraints for the generalized mean and generalized 
variance, which are imposed when Tsallis entropy is maximized to yield the q-
Gaussian PDF7

                                                 
6 However, in his 1995 paper Tsallis warns that Choquet’s mean value for a positive real constant λ, 
would yield λ, whereas the generalized Tsallis version of mean-value would result in a value 
generically smaller than λ for values of q > 1. 

. The second and third of these forms are identical to the S-shaped 
PWFs appearing in Cumulative Prospect Theory (also see Prelec, 1998, equations 3.5, 
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3.6: 506). Tversky and Wakker’s straightforward interpretation of this weighting 
function is illustrated below. Bounded sub-additivity obtains for the weighting 
function, w, if there exist boundary constants   0,0 ≥′≥ εε such that: 

 

 

 

The first of these conditions—upper sub-additivity—implies that a shift in probability 
has more impact when it makes an event certain than when it makes an event more 
probable. The second of these conditions—lower sub-additivity—implies that a shift 
is probability has more impact when it makes an event possible than when it merely 
increases the probability of an event. In the generalized model of uncertainty aversion, 
the property of bounded subadditivity implies that an event has a greater impact when 
it turns impossibility into possibility or possibility into certainty, than when it merely 
makes a possibility more likely (Tversky and Wakker, 1995, p. 1264). 

 

Queirós, Anteneodo, and Tsallis go on to demonstrate that q-Gaussian distributions 
can also be derived from (microscopic dynamic) stochastic processes characterised by 
multiplicative noise, 

( ) ( ) ( ) ( )ttxgxfx ηζ ++= , 

stochastic processes of linear form, 

( ) ( )ttxxx ηζγ ++−= , 

and stochastic processes with varying intensive parameters. Queirós (2005) examines 
a model of high-frequency stock trading volume with a stationary PDF given by the 
following q-exponential function: 
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Here υ represents traded volume as a normalized ratio of mean trading volume while 
α and θ are positive parameters. Meanwhile, it is presumed that trading volumes are 
governed by the following mean-reverting stochastic differential equation, 

dWdtd
β
γυ

β
αυγυ 21

+






 +
−−= , 

with Wt representing a zero mean and unitary variance Wiener process. Queirós shows 
that the stationary distribution is a member of the Gamma family with mean value 
<υ> = (1 + α)/β, and standard deviation < υ - <υ>>2 = (1 + α)/β2. This conventional 
model is modified by assuming that β  follows a (stationary) Gamma PDF, 
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This transforms the PDF for the marginal distribution of υ into what Queirós calls a q-
generalized Gamma probability function, 
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When q →1, implying the absence of fluctuations in β so that P(β) becomes a delta 
function centred in θ -1,  the traditional Gamma PDF is recovered. For small values of 
υ, P(υ) ~ υα. However, for large values of υ, P(υ) ~ υα/(1 – q). Through numerical 
simulation of this distribution Queirós shows that it closely matches empirical data 
(relating relative frequency × volume of trading activity) for ten high-volume stocks 
traded on NASDAQ. Queirós interprets this model to be one characterised by two 
ingredients: macroscopic memory (represented by multiplicative noise) and 
microscopic herding by traders (represented by local temporal fluctuations in β or the 
mean value of υ caused by rumours, news, and price movements)8

 
. 

Queirós and Tsallis (2004) examine the equivalence between second and fourth 
moments calculated for certain parameterisations of the q-Gaussian distribution and 
those derived from Engel’s ARCH(1,1) model of stochastic volatility. Queirós and 
Tsallis (2005) extend these results to incorporate Engel’s GARCH(1,1) process. Using 
a q-generalized form of Kullback-Leibler relative entropy, they examine temporal 
dependence between successive returns for the GARCH(1,1) process. 

 

Nevertheless, in the absence of behavioural interpretations, the whole exercise of 
representing financial returns or volumes by q-generalised conditional distributions 
amounts to an elaborate process of ‘curve-fitting’. In identifying the link between 
Tsallis entropy and Cumulative Prospect Theory, Tsallis and his colleagues failed to 
relate it to the axioms of Choquet utility theory, which are responsible for the 

                                                 
8 For an alternative phenomenological model applied to closed-form pricing of options incorporating 
skewness and smile see Borland (19989, 2002) and Borland and Bouchaud (2004). 
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resulting S-shaped distortion functions. No doubt, a set of behavioural axioms similar 
to those constructed for Cumulative Prospect Theory will soon be derived for 
financial applications of Tsallis entropy. This task has already been accomplished for 
Shannon-Boltzmann entropy, whose relationship to exponential utility functions is 
now well understood. All that has been achieved so far is recognition of the analogies 
holding between pseudo-additivity for Tsallis entropy, and bounded subadditivity for 
decision-making under uncertainty. These linkages are examined in the next section 
of the paper. 

 

4.2 Non-extensivity, Coherent Risk Measures, Choquet expected utility theory, 
and S-shaped distortion functions 
Kapur and Kesavan’s Entropy Optimization Postulate (1992: 297) suggests that every 
probability distribution, theoretical or observed, is an entropy optimisation 
distribution (i.e. it can be obtained by minimizing a cross-entropy measure with 
respect to an appropriate prior distribution, subject to appropriate moment 
constraints).  The relationship between minimum relative entropy and the Exponential 
Family of distributions is well known (Reesor and McLeish, 2002: 18-19). In 
addition, relative entropy is closely related both to sub-additivity and Choquet 
integration (Reesor and McLeish, 2002) and Mirofushi and Sugeno (1989) discuss the 
link between Fuzzy measure theory and Choquet integration.  

 

In the actuarial sciences distortion measures, which have a Choquet Integral 
representation, are widely used to determine insurance premium risk (Wang, 
1996a,b).  A distortion function, g, is any non-decreasing function on [0,1] such that 
g(0) = 0 and g(1) = 1. If a random variable X under the probability measure P has a 
cumulative distribution function (cdf) F defined by F(x) = P[X ≤ x], and a 
decumulative distribution function (dff) S defined by S(x) = P[X ≥ x] = 1 - F(x-), and 
if g(u) is a left-continuous distortion function then S*(x) = g[S(x)] is a ddf 
corresponding to a distorted probability distribution. The dual distortion function is 
given by ( ) ( )ugug −−= 11 .  

 

In a comprehensive paper, Reesor and McLeish (2002: 16) bring together a range of 
properties relating to maximum entropy distributions. Citing earlier work by 
Dennenberg (1994: Chpts 5, 6), they set out axioms that enable them to derive the 
Choquet integral defined with respect to a distortion function. Following research by 
Wirch and Hardy (2000), Reesor and McLeish (2002:19; proposition 7, corollaries 8, 
9) further demonstrate the precise relationship holding between: (a) the properties of 
the Choquet integral (specifically, sub-additivity and boundedness below the mean); 
(b) the non-positivity conditions that must be imposed on the moment constraints of a 
prior distribution when minimizing relative entropy; and, (c) the concavity properties 
of the distortion function. Citing Artzner, Dellbaen, and Heath (1999), Reesor and 
McLeish (2002: 21; definitions 7, 8, and 9) also demonstrate that the properties of 
coherent risk measures—namely; monotonicity, positive homogeneity, translation 
invariance, and sub-additivity—are precisely those satisfied by the Choquet integral. 
The necessary implication of this demonstrated relationship is that a risk measure is a 
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distorted risk measure if it has a Choquet integral representation (Reesor and 
McLeish, Theorem 5, 2002: 15).  

 

The use of the dual distortion function means that the distortion measure can be 
applied to the cdf to obtain F*(x) = g [F(x)]. Given a left-continuous distortion 
function g(u) such that S*(x) = g[S(x)], or equivalently, F*(x) = g [F(x)], then the 
Choquet Integral Distortion function can be derived by first noting that, 
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Here X+ = max(X, 0) and X- = max(0, -X). 

 

For any random variable X with ddf S(x), the Choquet Integral with respect to a 
distortion function g is accordingly given by Hg(X) in the following (Reesor and 
McLeish, 2002, definition 5:15), 
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This raises the obvious question of how coherent or distorted risk measures 
(particularly those depending on the positive part of the loss given by Hg(X+) ), which 
have demonstrated equivalences to the Choquet integral and to specific forms of 
moment constraints that are imposed in relative entropy optimisation problems, can 
reflect behavioural attitudes to risk and uncertainty. Following Wirch and Hardy 
(2000), Reesor explains this relationship by defining a utility function u(y) = -yg′(S(-
y)), which enables him to characterise the expected utility as, 

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )∫∫
∞

+
∞

+ −=′=′−−=−
00

XHdxxfxSgxdxxfxSgxXuE g . 

That is, the expected utility is the negative of the risk. Thus, distortion function can 
represent preferences towards risk or uncertainty. Moreover, the implied utility 
function u can be seen to depend on both the distribution S and the distortion function 
through the density g′(S(x)), which describes how much the “risk-neutral” utility u(x) 
= x is modified by the distortion (Reesor: 17). This characterisation provides the 
necessary link to the finance literature on the determination of equivalent martingale 
measures when pricing assets in incomplete markets using relative entropy or 
generalised Esscher transforms (Stutzer, 1995; Chan and van der Hoek, 2001)9

                                                 
9 Stutzer (1995, pp. 376-378) examines the relationship between minimum relative entropy, Gibbs state 
price probability densities, equivalent martingale measures, optimal portfolios associated with 

. Once 
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again, the link between distortion functions and the distorted probability density gives 
us the necessary relation to the derivative of the distortion function, as in, 
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Prelec (1998: 515) has shown that a preference relation satisfying the axioms that are 
sufficient for a Rank- and Sign-dependent representation of utility can, in turn, be 
represented by an S -shaped weighting function possessing the form 10

( ) ( )[ ]αβγυ pp lnexp −−=

, 

. 

If additional axioms of diagonal concavity, sub proportionality and compound 
invariance are satisfied, the specification takes the form11

( ) ( )[ ]αυ pp lnexp −−=

, 

. 

 

Groes et al., (1998) introduce two general and parsimonious axiomatic 
characterisations of the Choquet integral based on only two axioms, which are, 
respectively: the stochastic dominance axiom, and a minimum axiom. The first axiom 
requires that for any function, the integral with respect to a particular capacity should 
be larger than the integral with respect to another capacity, if the cumulative 
distribution derived from the function and the first capacity stochastically dominates 
the distribution derived from the first capacity. The second axiom, which accords with 
the properties of the ordinary integral for additive measures, requires that the integral 
with respect to a capacity assigning the value one to a specific set, and zero to all 
other sets, should be equal to the minimum of the integrated function over this set. 
Their analysis is only applied over finite sets, but the authors note that it could readily 
be extended to general sets through the introduction of a continuity axiom.  

 

                                                                                                                                            
preferences that are represented by a constant absolute risk aversion utility function. He also provides 
three additional non-utility theoretic interpretations of the resulting state price density function based 
on quasi-maximum likelihood, a minimum information bound, and a Bayesian interpretation, which is 
related to Laplace’s principle. 
10 Specifically, Prelec draws on axioms set out in Wakker (1994) and results from Wakker and Tversky 
(1993). Also, see Verlaine (2003: 9) and Miyamoto and Wakker (1996). Verlaine (2003) draws on 
Reesor and McLeigh’s demonstration that a risk measure is a distorted risk measure if it has a Choquet 
integral representation (Reesor and McLeigh, 2002:21; definitions 7,8,9) to show that an S-shaped 
Probability Weighting Function (PWF) of the kind advocated in Choquet Expected Utility Theory is 
one consistent with maximising entropy, subject to a specific constraint defined over a measure of 
information. A paper by van der Hoek and Sherris (2001) completes the circle in showing how the 
distortion function approach based on a transformed hazard function can be modified to differentially 
treat upside and downside risk. Their chosen distortion function replicates the valuation of prospects 
under Yaari’s (1987) dual theory of choice. 
11 See Tversky and Kahnemann, 1992 (cited in Prelec, 1998: 498). 
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5.0 Robust Control Theory and Human Cognition 
While extensions of Cumulative Prospect Theory account for uncertainty through sub-
additivity, an alternative perspective familiar to control theorists is one predicated on 
a multiple-priors approach. In a multiple-priors context, uncertainty aversion obtains 
when an agent’s probabilistic beliefs are given by a set of probability measures rather 
than a singleton distribution. In characterizing the optimal rules in this context, 
researchers assume that economic agents adopt an intertemporal max-min expected 
utility approach: in a game–theoretic context, nature is presumed to be malicious in 
maximizing a penalty function through the choice of a particular probability density 
from within the range of permissible distributions. The agent is then presumed to 
minimize the same penalty function through the choice of a (sub-optimal) control law 
and filter (Petersen, James, and Dupuis, 2000; Elliott et al., 1995; Andersen, Hansen 
and Sargent, 1999). These rules are designed to protect the agent against unfavourable 
probabilistic structures in the financial environment. In this control theoretic context, 
the duality between free energy and relative entropy applies to the stochastic 
uncertainty constraint, which in turn accounts for (multiplicative) model uncertainty, 
observation error, and (typically non-Gaussian) perturbation. Gilboa and Schmeidler 
(1989) have established the mathematical equivalence between each of these capacity-
based representations of uncertainty aversion: the first entailing the use of subadditive 
probabilitie, and the second deploying min-max optimization within a multiple-priors 
setting.  

 

By drawing on white-noise analysis and the Bochner-Minlos Theorem within a 
continuous time setting, Elliott and van der Hoek (2000) and Helge et al., (1996) these 
control-theoretic techniques of can be generalized and applied over Hilbert spaces to 
accommodate infinitely divisible distributions, including long-memory fractal 
Brownian motion and Lévy processes12

 

.  

Marinacci (1999) outlines a set of behavioural considerations that might motivate an 
approach to decision-making predicated on uncertainty aversion, while in Epstein and 
Schneider (2001), an axiomatic basis for uncertainty aversion has been constructed 
deploying a discrete-time, multiple-priors, recursive utility framework. A continuous-
time variant is discussed in Chen and Epstein (2000). Also, see the debate between 
Epstein and Schneider (2001), and Hansen et al. (2001) over the precise nature of the 
relationship holding between risk-sensitive penalty functions and multiple-priors 
forms of generalized utility. Significantly, Grant and Quiggin have shown how 
Epstein and Zhang’s (2001) definition of ‘ambiguous events’ can be used to define 
ambiguity aversion over preference relations in “a solely preference-based and model-
free manner” (Grant and Quiggin, 2002, p. 2). 

 

From an evolutionary (though, necessarily, somewhat speculative) perspective it 
stands to reason that animals would evolve a neuronal capacity for the perception of 
multi-fractal patterns and power-law processes within nature as this would support 
various anticipative and calculative forms of cognition. However, apart from a 

                                                 
12 Another related body of literature concerns fractional diffusion processes and fractional calculus. For 
an overview see Scalas (2005), Gorenflo, Mainardi and Scalas (2004), and Podlubny (1999). 
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heightened capacity for pattern recognition, the presence of non-extensive informatic 
properties would conceivably give rise to uncertainty aversion of the kind associated 
with Choquet Expected Utility Theory and risk-sensitive control theory in a multiple-
priors context. The sensitivity of penalty functions based on the Tsallis-distribution to 
fractal phenomena (for an image detection example see Piasecki et al., 2002) support 
the notion that s-shaped distortion functions and other forms of uncertainty aversion 
would provide animals an evolutionary cognitive advantage in environments where 
the stochastic processes governing relevant risks are fat tailed and conform in a fractal 
manner to power law distributions. 

 

Post-Keynesian economists such as David Dequech (2000) have argued that the 
distinction between fundamental (Keynesian) uncertainty and ambiguity should be 
based on the underlying distinction between the potential unknowability or 
knowability of currently incomplete information. Yet according to the above 
arguments, non-extensivity in financial processes derives from both ontological and 
epistemic considerations and from interactions between each of these. In his own 
research on liquidity preference Juniper (1995) has suggested that, from the 
perspective of risk-sensitive control theory, the conventionally applied ‘stochastic 
uncertainty constraint’ governing observation error, model uncertainty, and external 
perturbation can be viewed as a reflection of incomplete knowledge that may either be 
potentially knowable or unknowable in perpetuity. In each case the formal 
representation would be the same. This distinction between knowability or 
unknowability would obviously be preserved in any generalisation of control, filtering 
and estimation techniques; including those that replace quadratic penalty functions 
and root-mean-squared measures of uncertainty with (risk-sensitive) exponential 
penalties and Boltzmann-Gibbs entropic measures of uncertainty (i.e. where these are 
captured by the difference between free and bound entropy), and ultimately those 
drawing on q-exponential penalty functions and Tsallis entropy-based measures of 
stochastic uncertainty. Significantly, Tsallis and Stariolo (1995) have already 
considered an extension of this kind in their paper on q-generalised of techniques 
simulated annealing.  

 

6.0 A Keynesian Perspective on Conventional Finance Theory 
Current asset pricing models separate portfolio decisions from those made about 
production and physical investment. For example, the well-known Lucas tree mode 
treats the dividend process as exogenously determined. When asset-pricing models are 
combined with stochastic growth models, the latter are usually predicated on 
implausible neoclassical foundations (like those of Real Business Cycle theory) where 
the real forces of (marginal) productivity and thrift are ultimately responsible for 
driving the dividend process (Brock, 1982). In such cases neither unemployment nor 
underutilization of capacity can arise, other than as a temporary departure from the 
steady-state growth path (e.g. as certain variables jump instantaneously, overshooting 
or undershooting to keep the economy on a rational expectations trajectory which 
reflects fully anticipated, though longer-term adjustment costs).  

 

More significantly, the typical representative agent framework implicitly precludes 
the operation of any Keynesian fallacy of composition effects that might otherwise 
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result in an insufficiency of effective demand. Similarly, long-run monetary neutrality 
is often implicitly guaranteed by block recursive structure of neoclassical synthesis 
models (see the discussion of this feature in Sargent, 1979). All of this, of course, 
completely ignores the extensive literature on the capital debates and the implications 
this debate has for how processes of economic growth should be modelled. In a multi-
sectoral world where capital is acknowledged to be a reproducible good, the rather 
quaint notion that the marginal productivity of aggregate capital or labour could 
explain income distribution and growth must be abandoned. Needless to say, this 
realization, has implications for the econometric estimation of production functions, 
and undermines much of the Old and New Growth Theory—in both its stochastic or 
non-stochastic variants—except for those models which have merely reproduced 
earlier discoveries on the part of Sraffa, von-Neumann and Leontieff (Salvadori, 
2003).  

 

Juniper (2005) argues that the concept of uncertainty aversion closely corresponds to 
Keynesian notion of liquidity preference. While authors such as Dow and Werlang 
(1992) cite Frank Knight rather than Keynes, it is important to appreciate the critical 
differences between these two theorists. Ultimately, Knight believed that uncertainty 
aversion arises due to an inability on the part of certain individuals to specify the state 
space governing risk. Those who possess this ability are more likely to succeed in 
business enterprises. However, those who do not possess it themselves will not 
recognize this ability. Accordingly, it will be untraded, giving rise to the problem of a 
missing market. In contrast, Keynes adopted a more ontologically grounded view of 
uncertainty as something that pertains to long-term decision-making. The main 
ontological basis for this uncertainty is the phenomenological reality of human 
freedom and the creative ability to intervene in history, so transforming the nature of 
economic institutions and processes. 

 

Like his predecessors—Keynes and Harrod—Hyman Minsky also embraced the 
instability principle, which is predicated on the notion that economic instability is an 
endogenous phenomenon. In Minsky’s version of events, periods of optimism are 
seen to give rise to behavior that, in more conservative times, might appear reckless: 
banks, households, and firms embrace more fragile financial positions, in the sense 
that (present value) break-even times for investment and points of turn-around in 
debt-redemption are increasingly deferred. Initially, this recklessness occurs at a time 
when existing rates of interest are relatively small, primarily due to low levels of 
liquidity preference. For example, expanding firms rely more on external sources of 
finance rather than on retained earnings. In general, each class of agents becomes 
more exposed to less diversified sources of income and to financial obligations that 
are more rigid and inflexible. As the whole economy becomes more and more 
vulnerable to adverse changes in interest rates or downturns in effective demand, 
liquidity preference begins to rise, perversely feeding into the very process that 
determines the structure of short term interest rates. 

 

Juniper (2005) has argued that a Minksyian analysis of financial instability would 
require an interweaving of epistemic and ontological variables. From an epistemic 
perspective uncertainty aversion reflects a greater sensitivity on the part of agents to 
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the heightened consequences of any adverse movement in the spectrum of liquidity 
premia, these consequences, in turn, are (ontologically) determined by real changes in 
balance-sheet structures of economic agents: banks, households and firms. In a risk-
sensitive, stochastic optimal control setting, as we have seen, each of these interwoven 
factors has a clear interpretation: in risk sensitive control theory, uncertainty aversion 
is represented by the parameter in the penalty function determining where agents are 
situated along the spectrum between H2 and H-infinity control; whereas financial 
instability would be accommodated by an expansion in the stochastic uncertainty 
constraint representing model uncertainty, external perturbation and observation error.  

 

In many applications of risk-sensitive control, where penalty functions belong to the 
exponential family (reflecting constant absolute risk aversion), the stochastic 
uncertainty constraint represents the difference between free and bounded entropy. 
Presumably, in applications of Tsallis entropy the penalty function would conform to 
the power law family and the stochastic uncertainty constraint would be determined 
by the difference between free and bound Tsallis entropy. In a Minskian or Keynesian 
world, therefore, interactions between financial institutions, firms and households are 
seen to be crucial. In particular, uncertainty aversion or changes in liquidity 
preference would directly influence the decisions that firms make about real 
(physical) investment, not just the decisions that investors make about financial 
investment. Minsky’s work has spawned a variety of attempts to model financial 
instability using tools of non-linear dynamic simulation and analysis (Taylor & 
O’Connell, 1985; Foley, 1997; Keen, 1995, 1999, 2000; Chiarella and Flaschel, 
2000). However, little of this analysis has spilled over to influence quantitative 
finance theory. 

 

Needless to say, this interdependence between decisions of banks, households and 
firms has grown in importance due to the privatisation of social security, increased 
financial investment by middle-class households (not least through occupational 
superannuation); attempts by governments to fund of contingent liabilities through 
creation of funds leveraged over private sector activity, and an increasing reliance at 
all levels of government on pro-cyclical investment by private sector via private-
public partnerships.  

 

7.0 Conclusions 
The literature on multi-fractals, Tsallis distributions, and anomalous diffusion 
processes is growing rapidly. New applications of Tsallis entropy to decision-making 
are occurring on a weekly basis. In this context, it is inevitable that many of the issues 
described within this paper and often discussed in speculative terms, will become the 
focus of formal analysis and detailed empirical research.  

 

While uncertainty aversion is recognized as fundamental determinant of financial 
investment, it is less well appreciated that uncertainty aversion can readily be 
extended to non-financial investment through Real Options theory. There is a growing 
recognition of market incompleteness amongst Real Options theorists, because the 
risks applying to non-financial investment make replication difficult. This necessitates 
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the application of either utility maximising principles or the determination of 
equivalent martingale measures using relative entropy or Esscher transforms that are, 
themselves dual to utility functions. It is thus only a short step from here to 
recognition of the need to apply Choquet utility theory and other forms of uncertainty 
aversion in real options theory, as recognised in the literature on environmental 
sustainability (Basili, 1998).  

 

This step having been made, the macroeconomic implications for finance theory are 
that variations in uncertainty aversion will now influence the dividend process itself, 
via multiplier effects spreading from investment to overall levels of effective demand 
and aggregate activity. Fluctuations in investment are the main culprits in explaining 
movements in the point of effective demand, though the heightened responsiveness of 
consumer sentiment to developments in the markets for financial assets and property 
is of increasing concern to regulatory authorities. Each of these two sources of 
fluctuations, in turn, is primarily driven by variations in uncertainty aversion. 
Hysteresis effects would then influence the actual long-run rate of growth. This makes 
financial processes far more complex than those predicated either on exogenous 
dividend streams (the Lucas tree model) or those associated with stochastic growth 
models (Brock, 1982). And Keynesian insights into the nature of financial markets 
can no longer be precluded from investigation on erroneous ontological grounds. 
However, this paper has also been motivated by the conviction that research into 
aspects of this broad set of economic and financial phenomena, including uncertainty 
aversion, would no doubt benefit greatly from the insights and tools developed within 
non-extensive statistics. 

 

Another important question is why power law distributions and scale-invariance arise 
in financial processes. In physics, new interpretations of quantum mechanics have 
shown how the Schröedinger equation can be derived within Newtonian mechanics 
through the imposition of scale invariance and non-differentiability (Nottale, 1995). 
However, these fractal properties of space and time only become pertinent at 
cosmological or sub-atomic scales. In finance theory and economics, scale invariance 
obtains at scales far removed from these extremes. However, the relativity (linear 
homogeneity) of all prices and the arbitrariness of choice entailed by any choice of 
numeraire, points to one possible avenue of interpretation (see Hoogland & 
Neumann). From this perspective, issues raised by Piero Sraffa’s attempt to solve 
Ricardo’s problem of finding a standard of value that would be invariant to changes in 
income distribution, which is nowadays usually approached through a reworking of 
the Perron-Fröbenius theorems, come to the fore. Andrew’s Wittgensteinian insight 
into Sraffa’s position suggests that Sraffa was all too aware of the impossibility of this 
task. No standard could possibly be invariant to changes such crucial factors as 
income distribution, the rate of technological change, the presence of increasing or 
decreasing returns to scale in particular industrial sectors, and heterogeneity of labour. 
It is this very stumbling block, which has kept Marxist analysts chasing their tails for 
the last two decades. At the same time, the work of Tsallis and others on social 
networks highlights the empirical validity of power-law scaling in network effects 
(Abe and Suzuki, 2003). No doubt, the multi-fractal nature of news arrival processes 
may contribute to the generation of multi-fractal price distributions. 
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