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1. Introduction 
This paper reviews recent work on the properties of Tsallis distributions, Tsallis statistics, 
anomalous diffusion and multi-fractal processes.  Processes of this kind have the capacity to 
represent natural phenomena that are associated with turbulence and emerging complexity. 
However, in addition they may also capture crucial aspects of human decision-making in 
response to conditions of uncertainty. This leads to the obvious question of the inter-
relationship between each of these two fields: the behavioural and the empirical. The Tsallis 
or q-exponential distribution describes both an Ontological property (i.e. an empirical 
characterisation of existing stochastic processes such as wind turbulence, river flooding, 
rainfall, asset prices, transport through doped media, DNA sequencing, the arrival of news 
within information networks etc); and an Epistemic attribute (i.e. a behavioural 
characterisation of decision-making as seen in generalisations of subjective expected utility 
designed to account for investor aversion to ambiguity or uncertainty). The paper articulates 
the linkages between the property of non-extensivity possessed by generalised information 
measures such as Tsallis entropy, S-shaped distortion functions that are commonly applied in 
the actuarial sciences, coherent risk measures discussed in the finance literature, and what is 
called Choquet expected utility theory in the economics literature.  

The dual characterisation of the Tsallis distribution raises broader questions about the linkage 
between both the ontological and epistemic domains. In previous research Juniper (2005) has 
attempted to explain this linkage by arguing that an increasing fragility of real world 
phenomena would give rise to a heightened aversion to ambiguity on the part of decision 
makers. This is because fragility implies an increased sensitivity of the economy to adverse 
conditions. It is this increase in sensitivity that leads to a heightening of uncertainty aversion 
on the part of decision makers. Arguably, this kind of ontologico-epistemic interaction could 
be responsible for many of the reported ‘self-fulfilling prophecy’ phenomena in both 
economics and finance. In this regard, the very nature of the stochastic processes governing 
risk would, themselves, influence these adverse conditions. For example, stochastic processes 
conforming to Tsallis Distribution, Mandelbrot’s multifractal processes or Lévy-Stable Laws 
give rise to more extreme tail probabilities in comparison with Geometric Brownian motion, 
which would increase estimates of value-at-risk.  

The next section of the paper examines the distinction between uncertainty and risk. It then 
considers the distinction post-Keynesian theorists have attempted to make between aversion 
to uncertainty and aversion to risk. In an effort to dig deeper into these distinctions, the next 
section of the paper reviews a comprehensive study by Van der Lubbe et al. (1984), which 
adopts an information theoretic approach to the derivation of generalised measures of 
uncertainty. Three families of uncertainty measures are constructed which encompass almost 
all of the information measures in common usage, including Tsallis entropy. The property of 
non-extensivity or pseudo-additivity is also introduced in this section of the paper. Section 3 
of the paper provides an overview of the q-algebra that is associated with Tsallis entropy and 
the related Tsallis distribution. It reviews recent research, which has deployed the q-
generalised exponential and logarithmic functions to establish a generalisation of the Lévy-
Gnedenko central limit theorem. Sub-section 3.1 draws from what is now an extensive 
literature, some of the more pertinent relationships between Tsallis entropy, statistical 
distributions, and stochastic processes. Section 4 of the paper returns to examines the 
property of non-extensivity, which is associated with the hyperbolic family of generalised 
uncertainty measures, including Tsallis entropy. While section 4.1 highlights the relationship 
between non-extensivity, Kahneman and Tversky’s notion of Bounded Sub-additivity and 
Uncertainty Aversion in decision-making; section 4.2 examines the relationship holding 
between non-extensivity, Coherent Risk Measures, and the S-shaped distortion functions that 
arise in both the actuarial analysis of risk and in economic applications of Choquet expected 
utility theory. Section 5 of the paper interrogates the linkage between sub-additive 
probabilities and multiple-priors approaches to robust control and estimation. This sets the 



scene for a series of speculations on the nature of human cognition, the evolution of pattern-
recognition capabilities, which respond to the fractal geometry of nature, and uncertainty 
aversion in human decision-making. These speculative forays informs the analysis of section 
6, which draws together strands of analysis taken from other sections of the paper to embark 
on a Keynesian and Minskyian critique of quantitative finance theory. Concluding comments 
follow in section 7. 

2. Uncertainty Aversion and Risk Aversion 
In Book V of The General Theory Keynes argued against the then-dominant Treasury view 
that wage and price deflation would automatically cure any departures from full employment 
through increases in expenditure induced by falling real interest rates and continuously 
falling prices. Instead, Keynes emphasised the adverse impact of wage-price deflation on 
both the marginal efficiency of capital schedule, the precautionary demand for money, and 
the marginal propensity to consume (via shifts in income from high spending borrowers to 
low spending lender triggered by deflation under a regime of non-indexed, nominal 
contracting). However, the concerns of this paper are more broadly focused on the increased 
sensitivity of the economy (as reflected in the balance sheet positions of key decision-
makers—households, banks and firms) to adverse changes in sentiment (i.e. increasing 
aversion to uncertainty or ambiguity). 

While an increasing number of macroeconomists and quantitative finance theorists (including 
Hansen et al, 2002) are now willing to distinguish between aversion to risk and aversion to 
ambiguity or uncertainty, there are no doubt many who continue to hold to an outdated, 
rational expectations-informed position that the subjective probabilities reflecting aversion to 
risk could ultimately converge to objective probabilities. For the latter group of theorists, 
convergence would arise either through some kind of learning process, or rather through 
processes of evolutionary selection advantaging those agents who adopt more rational 
mechanisms in forming their expectations.  

Amongst heterodox theorists a more commonly held position would be that comprehensive 
information that would enable economic agents to predict future by means of frequency 
distributions does not exist due to the inherent creativity and unpredictability of human 
interventions that can transform institutions, introduce new products and services, and 
develop new ways of doing things (Dequech, 2000). As such, over varying time horizons and 
in various combinations, innovative forms of social interaction would transform the 
stochastic processes characterising economic phenomena. Accordingly, any attempts by 
theorists to formalize models of uncertainty aversion, that could in turn inform policy 
interventions, are dismissed as the economic equivalent of ‘paddling a canoe with a butterfly 
net’.1  

In contrast to such forms of heterodox skepsis, this paper sees virtue in the development of 
formal models of uncertainty aversion that could inform prudential control and policies 
designed to offset the damaging consequences of the business cycle. Accordingly, the next 
section of the paper begins with an outline of generalized information measures that could 
serve as an integrative framework for further inquiry into the nature of uncertainty aversion. 
It will be shown that these measures, while conforming to Kolmogorov’s axioms of 
probability, are sufficiently general to account for complex, multifractal stochastic processes. 

2.1 Generalised Uncertainty Measures 
In a discrete probability setting Van der Lubbe et al. (1984), demonstrate the existence of 
three families of information measures based on the relation between information and 
certainty rather than on the conventional mode of derivation, which is based on the relation 

                                                 
1 This metaphor was conveyed to the author in an email by Professor Paul Davidson in a critique of the author’s 
earlier attempts to develop a formal model of Keynesian liquidity preference. 



between information and uncertainty. Thus, each information measure is constructed from 
two certainty measures, each of which conforms to a set of desirable formal properties. From 
the resulting certainty measure the authors derive a strictly monotonic, continuous measure 
of average certainty.  This enables the authors to derive (van der Lubbe et al., 1984, 
definition 2: 197) three general classes of information measures for parameters (ρ, σ, δ) ∈ E 
= {{ρ, σ, δ⏐(ρ, σ) ∈ D ∧ δ > 0}: 

1. a) the logarithmic information measure given by, 
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2. b) the linear information measure given by, 
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3. c) the hyperbolic information measure given by, 
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It can be seen that each of these measures operates with a different formal representation of 
uncertainty, where the latter defined in relation to average certainty (i.e. the summation term 
appearing in the square brackets and raised to the power of σ).  Next, van der Lubbe et al. 
(1984, theorem 4: 201-202) establish conditions that such information measures, H(X), 
should satisfy—namely: non-negativity, continuity, strict monotonicity H(P) = I[f(P)] ≥ 0 of 
the information measure; and for stochastically independent experiments P and Q, that 
H(PQ) = H(P) + H(Q) +c H(P)⋅ H(Q)—which enables them to determine non-trivial 
solutions for the measure: 

1. c = 0 for 1Hn,  with ρ = ab + 1, σ = 1/b,and (ρ, σ, δ) ∈ E; 

2. c < 0 for 2Hn,  with δ = -1/c, ρ = ab + 1, σ = 1/b, and (ρ, σ, δ) ∈ E; 

3. c > 0 for 3Hn,  with δ = 1/c,  ρ = ab + 1, σ = d/b, with d > 0, and (ρ, σ, δ) ∈ E. 

 
Moreover, van der Lubbe et al (2001: 204) show that the following relations obtain between 
each of the measures, 
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A variety of minor theorems and corollaries then establish the properties of these information 
measures. 1Hn is Rényi entropy with ρ = α, σ = 1/(α - 1), δ = 1. 2Hn is Havrda and Charvat or 
Daroczy entropy for ρ = β > 0, β ≠1, σ = 1, δ = 1/(1 – 21 -β). The Sharma and Mittal 
Information measure of order α and type β results for 2Hn with ρ = α, σ = (β -1)/(α - 1), δ = 
1/(1 - 21 -β). Arimoto’s R-norm results when ρ = R, σ = 1/ρ, δ = R/(R – 1). Lansberg’s 
entropy measure results from 2Hn  when ρ = q, σ = -1, and δ = 1/(1 – q). Finally, Tsallis 
entropy can be derived from van der Lubbe et al’s hyperbolic 3Hn information measure 
through the substitutions: ρ = q, σ = -1, δ = 1/(1 – q), as noted by Tsallis (1995). 

 



From the second class of certaity measures the authors derive two additional families of 
information measures given by, 

( )

( ) 0,0,11

;0,0,log

1

1

<>
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−⎥
⎦

⎤
⎢
⎣

⎡
=

<>=

∏

∑

=

=

dcap
c

XH

dappdaXH

adn

i

p
i

n

i
ii

i

 

The first of these is identical to that of Shannon Entropy up to a constant, while the second 
includes Leti’s measure of reltive diversity. 

Van der Lubbe et al’s (2001: 94) paper has noteworthy implications. Associated with the 
three families of information statistics are three related forms of expectation operator. A 
unique version of probabilistic analysis can be constructed for each class of expectations 
operator without the necessity for any resort to measure theory. Accordingly, the theorist is 
able to choose the particular class of analysis that is most appropriate for his or her specific 
inquiry. One example of this is the class of probability theory pertaining to non-extensive 
statistical mechanics. Non-extensivity, often termed pseudo-additivity, can take a super- or 
sub-additive form. It is defined by non-zero values of c in the relationship that is presumed to 
obtain between information measures defined over statistically independent distributions P 
and Q. This relationship (reproduced for convenience below) relates the measure of the joint 
distributions to their individual and marginal distributions, 

H(PQ) = H(P) + H(P) +c H(P)⋅ H(Q).  

Here the c parameter embodies the property of global correlation between independent 
distributions. In the development of non-extensive statistical mechanics both Rényi and 
Tsallis entropy have played a dominant role. The following section of the paper first 
discusses the properties of Tsallis entropy, its supporting axioms, and their relationship to 
Lévy processes, before examining the implications of the property of pseudo-additivity for 
decision-making under uncertainty. 

3. The q-algebra and the q-generalised Central Limit Theorem 
In explicating the properties of what is now commonly referred to as the q-algebra, Suyari 
(2004) reveals what he describes as the underlying beauty and simplicity of the mathematical 
processes that result in the Tsallis distribution. Suyari (2004:2) begins by defining the q-
product as follows, 
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Following Tsallis (1994), Suyari introduces the q-logarithmic and q-exponential functions 
defined below, 
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On the basis of these definitions the q-product satisfies the following: 
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The q-exponential function can be derived in a manner analogous to that for the conventional 

exponential function (i.e. ( )
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The q-sum of two real numbers, which is commutative, associative, and recovers the 
conventional summation operation when q = 1, is defined by the following, 

( )xyqyxyx q −++=⊕ 1  . 

By inversion, q-subtraction, which is also commutative, associative, and recovers the 
conventional summation operation when q = 1, can be defined as, 
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This q-algebra plays a crucial role in the burgeoning field of Tsallis statistics. For example, 
Suyari and Tsukada (2005) demonstrate that the Tsallis distribution, 
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can be derived by taking the maximal value of the q-product of the likelihood function, Lq 
(θ), shown below, 
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Suyari shows that the q-product can also be applied in deriving the q-Sterling’s formula for 
the q-factorial n!q for n ∈ N and q > 0 (Suyari, 2004:5), 
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The Central Limit Theorem (CLT) implies that any sum of N independent random variables 
will tend, as N→∞, to be distributed according to a certain law (which operates as an 
attractor in the space of distributions. When the distribution of the individual random 
variables has finite variance the asymptotic distribution for the sum will be the Normal or 
Gaussian distribution. In the de Moivre-Laplace theorem it is demonstrated that 
asymptotically, as N →∞,  the Binomial distribution approaches a Gaussian distribution. The 
Lévy-Gnedenko-Kolmogorov generalisation of the CLT states that the asymptotic 
distribution of the sum of N independent, infinite-variance random variables will be the Lévy 
distribution. Suyari (2004) deploys his q-logarithmic generalisation of Sterling’s formula to 
establish numerical indications of the limiting properties of generalized q-binomial and q-
multinomial models, showing that in each case, they converge to the Tsallis distribution. 

In the literature on a q-algebra there is a natural progression from the q-arithmetic (the q-
sum, q-subtraction, q-product and q-division) through to the hyperbolic functions such as the 
q-logarithm and q-exponential. It is then only a small step to the construction of a q-
generalisation of the Fourier transform. It is this version of the Fourier transform that 
Umarov, Tsallis, Gell-Mann and Steinberg (2006a,b) deploy in their generalisation of the 



Lévy-Gnedenko central limit theorem. An approach of this kind was inevitable given earlier 
research highlighting numerical indications of a q-generalised central limit theorem, and the 
fact that the original Lévy-Gnedenko version of the central limit theorem was originally 
conceived and executed entirely within the frequency- rather than the time-domain using the 
Fourier transform. 

3.1 Tsallis Entropy and Stochastic Processes 
While Boltzmann-Shannon-Gibbs (BSG) entropy is defined by (Abe, 2000): 
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Tsallis entropy is defined by: 
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In this generalisation of BSG-entropy, the q parameter represents the degree of 
nonextensivity. Tsallis’s nonextensive measure meets Kapur and Kesavan’s requirements for 
a generalized measures of cross entropy (1994:309-15). In section 2.1 it was shown that 
Tsallis entropy could be derived from van der Lubbe et al’s hyperbolic 3Hn information 
measure through the substitutions: ρ = q, σ = -1, δ = 1/(1 – q), as noted by Tsallis (1995). 

Tsallis entropy provides a useful ansatz for the calculation of solutions to certain nonlinear 
partial differential equations. Moreover, under appropriate constraints the maximisation of 
Tsallis entropy also yields exact time-dependent solutions for a family of non-linear Fokker-
Planck equations representing anomalous diffusion and certain self-organizing phenomena 
(Tsallis, 1995; Tsallis et al., 1998). These equations are characterized by a diffusion term 
depending on the power of the probability density. Under equiprobability, 

.lnmax WkSS qqq ==  

In the 20s and 30s, Lévy was concerned with the question of how to represent a situation of 
fractal scaling where the sum of identically random distributed variables has the same 
probability distribution as any one of the terms in the sum. The resulting distributions are 
now called Lévy’s stable laws (Shlesinger et al., 1987: 1100). Drawing on initial work by 
Sainty (1992), Jumarie (2000, Chapters 6 and 7) sets out a mathematically simpler 
construction of complex-valued fractional Brownian motion (C-(fBm)n), conceived as the 
limit of random walks in the complex plane. 

In contrast to a conventional random walk, for which large step lengths are (exponentially) 
rare, a Lévy flight is a random walk whose step length occurs with a power law frequency 
(Gupta & Campanha, 2002: 531). Thus Lévy flights have infinite variance. In real systems 
the variance of a stationary process is finite. Therefore, to describe such systems using Lévy 
flight processes, some kind of arbitrary cut-off must be imposed. Early research in this vein 
by Mantegna and Stanley (1995) deployed a truncated Lévy flight process.  More recent 
developments (Gupta and Campanha, 2000, 2002) allow for the gradual elimination of large 
step sizes by using an exponential, capacity-related, cut-off term. The resulting gradually 
truncated Lévy distributions (GTLDs) approach the Gaussian distribution at relatively low-
frequencies, but at high frequencies gives rise to a power-law distribution. 

Montroll and Schlesinger (1983: 215) have shown that Lévy processes can be derived from 
maximizing Shannon-Boltzmann entropy under the usual normalisation condition if the 
following moment constraint is imposed, 
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However, they acknowledge that ‘it is difficult to imagine that anyone in an a priori manner 
would introduce’ a condition of this nature for maximising entropy2. Indeed, Tsallis (1995) 
uses this presumption to justify his favoured approach based on generalised entropy. 

While GTLDs are based on positive feedback and physical limitations, Tsallis statistics are 
based on generalized thermodynamic considerations. Nevertheless, both statistics yield 
almost the same distribution. For this reason, Gupta and Campanha (2002: 385) speculate 
that the parameters of the GTLD are related to the q parameter because the limit that arises is 
due to similar thermodynamical or other natural requirements.  

For statistically independent systems A and B, under Tsallis entropy, it is well known that 
pseudoadditivity obtains (which is congruent with the findings of Lubbe et al, 2001, 
discussed in section 2.1 of the paper), namely: 

[ ] [ ] [ ] ( ) [ ] [ ]BSASqBSASBAS qqqqq −++= 1,  (see Di Sisto et al, 1999)3. 

Another characterisation, which obtains for a partition of this probability space into two 
segments, one for low valued probabilities (summing to pL) and the other for high valued 
probabilities (summing to pM), of pseudoadditivity for systems A and B is: 
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while subadditivity privileges frequent events (Tsallis et al, 1998, p.535). Although pseudo-
additivity is familiar to theoretical physicists, important applications have also arisen in 
quantitative finance and the theory of decision-making under uncertainty (see Schmeidler, 
1989). These applications will be examined in section 4 of the paper. 

Abe (2000) shows how the Shannon-Khinchin axioms for Boltzmann-Shannon entropy can 
be modified to accommodate Tsallis entropy. His paper establishes that a quantity satisfying 
the transformed axioms is uniquely equal to Tsallis entropy. Thus, his uniqueness result 
represents a natural generalisation of the Shannon-Khinchin result for Boltzmann-Shannon 
entropy by establishing a parallelism with the original axioms. Tsallis et al (1995) argue that 
the ubiquity and robustness of the Lévy distribution follow naturally from the generalized 
central-limit theorem, which applies to convolutions of distributions. Significantly, they 
further demonstrate that that Tsallis entropy generalizes the traditional inverse relationship 
known to hold between Boltzmann-Shannon entropy and the exponential function. 

Abe (1997) shows that Tsallis entropy can be interpreted using Jackson’s generalized 
differential operator. While Jackson’s operator ‘tests’ the function f(x) under dilation, the 
usual derivative tests it under translation. This feature explains the usefulness of Tsallis 
entropy for describing chaotic systems with multifractal characteristics4. Under appropriate 

                                                 
2 This moment constraint is related to the Fourier transform of the Lévy distribution which reads, 
( ) ( ) ( ) ( )γbkdpip −=⋅= ∫ expexp xxxkk , 

where b is a positive constant and k ≡ ⏐k⏐. It is this transform, which Lévy used to define the distribution 
named after him, that is responsible for the self-similarity property of the distribution, because it converts the 
convolution of two Lévy distributions with the same exponent into a third Levy distribution with the same 
exponent (Zanette, 1999): 
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3 Compare this result with van der Lubbe et al’s theorem four. 
4 Jackson’s generalized differential operator, Dq, defined for an arbitrary function f(x) is given by: 



moment constraints over the first and second moments of the distribution, Boltzmann-
Shannon entropy can be used to derive the familiar Gaussian process. However, under 
slightly modified moments constraints (which take into account the divergence of the second 
moment), De Souza and Tsallis (1997) also show that Tsallis entropy can be used to derive 
the Students-t distribution. Similarly, Abe and Turner (2005) show how the assumptions 
made by Einstein in his classic derivation of Brownian motion can be relaxed (specifically, 
the assumption relating to the existence of the second moment of the distribution is replaced 
by one assuming that the distribution has a divergent second moment whose characteristic 
function is given by a ‘stretched exponential form’), so that the solution to the diffusion 
equation (obtained using the techniques of fractional calculus) meets the defining 
characteristics of the Lévy distribution. 

4. Non-extensivity 
This section of then paper re-examines the property of non-extensivity, which is associated 
with the hyperbolic family of generalised uncertainty measures, including Tsallis entropy. 
Specifically, section 4.1 highlights the relationship between non-extensivity, Kahneman and 
Tversky’s notion of Bounded Sub-additivity and Uncertainty Aversion in decision-making. 
Section 4.2 examines the relationships between non-extensivity, Coherent Risk Measures, 
and the S-shaped distortion functions that arise in both the actuarial analysis of risk and in 
economic applications of Choquet expected utility theory. 

4.1 Bounded Sub-additivity and Uncertainty Aversion  
Significantly, Tsallis et al (2003) comment on the relationship between the property of 
pseudoadditivity and Cumulative Prospects Theory (CPT)—Kahneman and Tversky’s model 
of non-expected utility. The authors also cite Dow and Werlang’s work on Choquet Expected 
Utility Theory in Tsallis (1995)5.  

Anteneodo and Tsallis (2003) acknowledge this generalisation of Prospect theory to a rank-
dependent utility form, which entails an S-shaped distortion of the cumulative distribution 
function. However, because their paper only considers simple prospects with a single positive 
outcome, the specific role of Choquet Integration is not clarified or expounded. This 
simplification allows them to consider a variety of straightforward functional forms in 
calculating q-expectation values, including: 
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5 However, in his 1995 paper Tsallis warns that Choquet’s mean value for a positive real constant λ, would 
yield λ, whereas the generalized Tsallis version of mean-value would result in a value generically smaller than 
λ for values of q > 1. 



Queirós, Anteneodo, and Tsallis (2005: equations 5 and 6) note that similar functional forms 
appear in the moment constraints for the generalized mean and generalized variance, which 
are imposed when Tsallis entropy is maximized to yield the q-Gaussian PDF6. The second 
and third of these forms are identical to the S-shaped PWFs appearing in Cumulative 
Prospect Theory (also see Prelec, 1998, equations 3.5, 3.6: 506). Tversky and Wakker’s 
straightforward interpretation of this weighting function is illustrated below. Bounded sub-
additivity obtains for the weighting function, w, if there exist boundary constants 

  0,0 ≥′≥ εε such that: 

 

 

The first of these conditions—upper sub-additivity—implies that a shift in probability has 
more impact when it makes an event certain than when it makes an event more probable. The 
second of these conditions—lower sub-additivity—implies that a shift is probability has more 
impact when it makes an event possible than when it merely increases the probability of an 
event. In the generalized model of uncertainty aversion, the property of bounded 
subadditivity implies that an event has a greater impact when it turns impossibility into 
possibility or possibility into certainty, than when it merely makes a possibility more likely 
(Tversky and Wakker, 1995: 1264). 

Queirós, Anteneodo, and Tsallis go on to demonstrate that q-Gaussian distributions can also 
be derived from (microscopic dynamic) stochastic processes characterised by multiplicative 
noise, 

( ) ( ) ( ) ( )ttxgxfx ηζ ++= , 

stochastic processes of linear form, 
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and stochastic processes with varying intensive parameters. Queirós (2005) examines a 
model of high-frequency stock trading volume with a stationary PDF given by the following 
q-exponential function: 
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Here υ represents traded volume as a normalized ratio of mean trading volume while α and θ 
are positive parameters. Meanwhile, it is presumed that trading volumes are governed by the 
following mean-reverting stochastic differential equation, 
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with Wt representing a zero mean and unitary variance Wiener process. Queirós shows that 
the stationary distribution is a member of the Gamma family with mean value <υ> = (1 + 
α)/β, and standard deviation < υ - <υ>>2 = (1 + α)/β2. This conventional model is modified 
by assuming that β  follows a (stationary) Gamma PDF, 
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This transforms the PDF for the marginal distribution of υ into what Queirós calls a q-
generalized Gamma probability function, 
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When q →1, implying the absence of fluctuations in β so that P(β) becomes a delta function 
centred in θ -1,  the traditional Gamma PDF is recovered. For small values of υ, P(υ) ~ υα. 
However, for large values of υ, P(υ) ~ υα/(1 – q). Through numerical simulation of this 
distribution Queirós shows that it closely matches empirical data (relating relative frequency 
× volume of trading activity) for ten high-volume stocks traded on NASDAQ. Queirós 
interprets this model to be one characterised by two ingredients: macroscopic memory 
(represented by multiplicative noise) and microscopic herding by traders (represented by 
local temporal fluctuations in β or the mean value of υ caused by rumours, news, and price 
movements)7. 

Queirós and Tsallis (2004) examine the equivalence between second and fourth moments 
calculated for certain parameterisations of the q-Gaussian distribution and those derived from 
Engel’s ARCH(1,1) model of stochastic volatility. Queirós and Tsallis (2005) extend these 
results to incorporate Engel’s GARCH(1,1) process. Using a q-generalized form of Kullback-
Leibler relative entropy, they examine temporal dependence between successive returns for 
the GARCH(1,1) process. 

Nevertheless, in the absence of behavioural interpretations, the whole exercise of 
representing financial returns or volumes by q-generalised conditional distributions amounts 
to an elaborate process of ‘curve-fitting’. In identifying the link between Tsallis entropy and 
Cumulative Prospect Theory, Tsallis and his colleagues failed to relate it to the axioms of 
Choquet utility theory, which are responsible for the resulting S-shaped distortion functions. 

                                                 
7 For an alternative phenomenological model applied to closed-form pricing of options incorporating skewness 
and smile see Borland (19989, 2002) and Borland and Bouchaud (2004). 



No doubt, a set of behavioural axioms similar to those constructed for Cumulative Prospect 
Theory will soon be derived for financial applications of Tsallis entropy. This task has 
already been accomplished for Shannon-Boltzmann entropy, whose relationship to 
exponential utility functions is now well understood. All that has been achieved so far is 
recognition of the analogies holding between pseudo-additivity for Tsallis entropy, and 
bounded subadditivity for decision-making under uncertainty. These linkages are examined 
in the next section of the paper. 

4.2 Non-extensivity, Coherent Risk Measures, Choquet expected utility theory, 
and S-shaped distortion functions 
Kapur and Kesavan’s Entropy Optimisation Postulate (1992: 297) suggests that every 
probability distribution, theoretical or observed, is an entropy optimisation distribution (i.e. it 
can be obtained by minimizing a cross-entropy measure with respect to an appropriate prior 
distribution, subject to appropriate moment constraints).  The relationship between minimum 
relative entropy and the Exponential Family of distributions is well known (Reesor and 
McLeish, 2002: 18-19). In addition, relative entropy is closely related both to sub-additivity 
and Choquet integration (Reesor and McLeish, 2002) and Mirofushi and Sugeno (1989) 
discuss the link between Fuzzy measure theory and Choquet integration.  

In the actuarial sciences distortion measures, which have a Choquet Integral representation, 
are widely used to determine insurance premium risk (Wang, 1996a,b).  A distortion 
function, g, is any non-decreasing function on [0,1] such that g(0) = 0 and g(1) = 1. If a 
random variable X under the probability measure P has a cumulative distribution function 
(cdf) F defined by F(x) = P[X ≤ x], and a decumulative distribution function (dff) S defined 
by S(x) = P[X ≥ x] = 1 - F(x-), and if g(u) is a left-continuous distortion function then S*(x) = 
g[S(x)] is a ddf corresponding to a distorted probability distribution. The dual distortion 
function is given by ( ) ( )ugug −−= 11 .  
In a comprehensive paper, Reesor and McLeish (2002: 16) bring together a range of 
properties relating to maximum entropy distributions. Citing earlier work by Dennenberg 
(1994: Chpts 5, 6), they set out axioms that enable them to derive the Choquet integral 
defined with respect to a distortion function. Following research by Wirch and Hardy (2000), 
Reesor and McLeish (2002:19; proposition 7, corollaries 8, 9) further demonstrate the precise 
relationship holding between: (a) the properties of the Choquet integral (specifically, sub-
additivity and boundedness below the mean); (b) the non-positivity conditions that must be 
imposed on the moment constraints of a prior distribution when minimizing relative entropy; 
and, (c) the concavity properties of the distortion function. Citing Artzner, Dellbaen, and 
Heath (1999), Reesor and McLeish (2002: 21; definitions 7, 8, and 9) also demonstrate that 
the properties of coherent risk measures—namely; monotonicity, positive homogeneity, 
translation invariance, and sub-additivity—are precisely those satisfied by the Choquet 
integral. The necessary implication of this demonstrated relationship is that a risk measure is 
a distorted risk measure if it has a Choquet integral representation (Reesor and McLeish, 
Theorem 5, 2002: 15).  

The use of the dual distortion function means that the distortion measure can be applied to 
the cdf to obtain F*(x) = g [F(x)]. Given a left-continuous distortion function g(u) such that 
S*(x) = g[S(x)], or equivalently, F*(x) = g [F(x)], then the Choquet Integral Distortion 
function can be derived by first noting that, 
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Here X+ = max(X, 0) and X- = max(0, -X). 

For any random variable X with ddf S(x), the Choquet Integral with respect to a distortion 
function g is accordingly given by Hg(X) in the following (Reesor and McLeish, 2002, 
definition 5:15), 
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This raises the obvious question of how coherent or distorted risk measures (particularly 
those depending on the positive part of the loss given by Hg(X+) ), which have demonstrated 
equivalences to the Choquet integral and to specific forms of moment constraints that are 
imposed in relative entropy optimisation problems, can reflect behavioural attitudes to risk 
and uncertainty. Following Wirch and Hardy (2000), Reesor explains this relationship by 
defining a utility function u(y) = -yg′(S(-y)), which enables him to characterise the expected 
utility as, 
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That is, the expected utility is the negative of the risk. Thus, distortion function can represent 
preferences towards risk or uncertainty. Moreover, the implied utility function u can be seen 
to depend on both the distribution S and the distortion function through the density g′(S(x)), 
which describes how much the ‘risk-neutral’ utility u(x) = x is modified by the distortion 
(Reesor: 17). This characterisation provides the necessary link to the finance literature on the 
determination of equivalent martingale measures when pricing assets in incomplete markets 
using relative entropy or generalised Esscher transforms (Stutzer, 1995; Chan and van der 
Hoek, 2001)8. Once again, the link between distortion funcions and the distorted probability 
density gives us the necessary relation to the derivative of the distortion function, as in, 
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8 Stutzer (1995, pp. 376-378) examines the relationship between minimum relative entropy, Gibbs state price 
probability densities, equivalent martingale measures, optimal portfolios associated with preferences that are 
represented by a constant absolute risk aversion utility function. He also provides three additional non-utility 
theoretic interpretations of the resulting state price density function based on quasi-maximum likelihood, a 
minimum information bound, and a Bayesian interpretation, which is related to Laplace’s principle. 



Prelec (1998: 515) has shown that a preference relation satisfying the axioms that are 
sufficient for a Rank- and Sign-dependent representation of utility can, in turn, be 
represented by an S -shaped weighting function possessing the form 9, 

( ) ( )[ ]αβγυ pp lnexp −−= . 

If additional axioms of diagonal concavity, sub proportionality and compound invariance are 
satisfied, the specification takes the form10, 

( ) ( )[ ]αυ pp lnexp −−= . 

Groes et al., (1998) introduce two general and parsimonious axiomatic characterisations of 
the Choquet integral based on only two axioms, which are, respectively: the stochastic 
dominance axiom, and a minimum axiom. The first axiom requires that for any function, the 
integral with respect to a particular capacity should be larger than the integral with respect to 
another capacity, if the cumulative distribution derived from the function and the first 
capacity stochastically dominates the distribution derived from the first capacity. The second 
axiom, which accords with the properties of the ordinary integral for additive measures, 
requires that the integral with respect to a capacity assigning the value one to a specific set, 
and zero to all other sets, should be equal to the minimum of the integrated function over this 
set. Their analysis is only applied over finite sets, but the authors note that it could readily be 
extended to general sets through the introduction of a continuity axiom.  

5. Robust Control Theory and Human Cognition 
While extensions of Cumulative Prospect Theory account for uncertainty through sub-
additivity, an alternative perspective familiar to control theorists is one predicated on a 
multiple-priors approach. In a multiple-priors context, uncertainty aversion obtains when an 
agent’s probabilistic beliefs are given by a set of probability measures rather than a singleton 
distribution. In characterizing the optimal rules in this context, researchers assume that 
economic agents adopt an intertemporal max-min expected utility approach: in a game–
theoretic context, nature is presumed to be malicious in maximizing a penalty function 
through the choice of a particular probability density from within the range of permissible 
distributions. The agent is then presumed to minimize the same penalty function through the 
choice of a (sub-optimal) control law and filter (Petersen, James, and Dupuis, 2000; Elliott et 
al., 1995; Andersen, Hansen and Sargent, 1999). These rules are designed to protect the agent 
against unfavourable probabilistic structures in the financial environment. In this control 
theoretic context, the duality between free energy and relative entropy applies to the 
stochastic uncertainty constraint, which in turn accounts for (multiplicative) model 
uncertainty, observation error, and (typically non-Gaussian) perturbation. Gilboa and 
Schmeidler (1989) have established the mathematical equivalence between each of these 
capacity-based representations of uncertainty aversion: the first entailing the use of 
subadditive probabilities, and the second deploying min-max optimisation within a multiple-
priors setting.  

 
                                                 
9 Specifically, Prelec draws on axioms set out in Wakker (1994) and results from Wakker and Tversky (1993). 
Also, see Verlaine (2003: 9) and Miyamoto and Wakker (1996). Verlaine (2003) draws on Reesor and 
McLeigh’s demonstration that a risk measure is a distorted risk measure if it has a Choquet integral 
representation (Reesor and McLeigh, 2002:21; definitions 7,8,9) to show that an S-shaped Probability 
Weighting Function (PWF) of the kind advocated in Choquet Expected Utility Theory is one consistent with 
maximising entropy, subject to a specific constraint defined over a measure of information. A paper by van der 
Hoek and Sherris (2001) completes the circle in showing how the distortion function approach based on a 
transformed hazard function can be modified to differentially treat upside and downside risk. Their chosen 
distortion function replicates the valuation of prospects under Yaari’s (1987) dual theory of choice. 
10 See Tversky and Kahnemann, 1992 (cited in Prelec, 1998: 498). 
 



By drawing on white-noise analysis and the Bochner-Minlos Theorem within a continuous 
time setting, Elliott and van der Hoek (2000) and Helge et al., (1996) these control-theoretic 
techniques of can be generalized and applied over Hilbert spaces to accommodate infinitely 
divisible distributions, including long-memory fractal Brownian motion and Lévy 
processes.11 

Marinacci (1999) outlines a set of behavioural considerations that might motivate an 
approach to decision-making predicated on uncertainty aversion, while in Epstein and 
Schneider (2001), an axiomatic basis for uncertainty aversion has been constructed deploying 
a discrete-time, multiple-priors, recursive utility framework. A continuous-time variant is 
discussed in Chen and Epstein (2000). Also, see the debate between Epstein and Schneider 
(2001), and Hansen et al. (2001) over the precise nature of the relationship holding between 
risk-sensitive penalty functions and multiple-priors forms of generalized utility. 
Significantly, Grant and Quiggin have shown how Epstein and Zhang’s (2001) definition of 
‘ambiguous events’ can be used to define ambiguity aversion over preference relations in ‘a 
solely preference-based and model-free manner’ (Grant and Quiggin, 2002: 2). 

From an evolutionary (though, necessarily, somewhat speculative) perspective it stands to 
reason that animals would evolve a neuronal capacity for the perception of multi-fractal 
patterns and power-law processes within nature as this would support various anticipative 
and calculative forms of cognition. However, apart from a heightened capacity for pattern 
recognition, the presence of non-extensive informatic properties would conceivably give rise 
to uncertainty aversion of the kind associated with Choquet Expected Utility Theory and 
risk-sensitive control theory in a multiple-priors context. The sensitivity of penalty functions 
based on the Tsallis-distribution to fractal phenomena (for an image detection example see 
Piasecki et al., 2002) support the notion that s-shaped distortion functions and other forms of 
uncertainty aversion would provide animals an evolutionary cognitive advantage in 
environments where the stochastic processes governing relevant risks are fat tailed and 
conform in a fractal manner to power law distributions. 

Post-Keynesian economists such as David Dequech (2000) have argued that the distinction 
between fundamental (Keynesian) uncertainty and ambiguity should be based on the 
underlying distinction between the potential unknowability or knowability of currently 
incomplete information. Yet according to the above arguments, non-extensivity in financial 
processes derives from both ontological and epistemic considerations and from interactions 
between each of these. In his own research on liquidity preference Juniper (1995) has 
suggested that, from the perspective of risk-sensitive control theory, the conventionally 
applied ‘stochastic uncertainty constraint’ governing observation error, model uncertainty, 
and external perturbation can be viewed as a reflection of incomplete knowledge that may 
either be potentially knowable or unknowable in perpetuity. In each case the formal 
representation would be the same. This distinction between knowability or unknowability 
would obviously be preserved in any generalisation of control, filtering and estimation 
techniques; including those that replace quadratic penalty functions and root-mean-squared 
measures of uncertainty with (risk-sensitive) exponential penalties and Boltzmann-Gibbs 
entropic measures of uncertainty (i.e. where these are captured by the difference between free 
and bound entropy), and ultimately those drawing on q-exponential penalty functions and 
Tsallis entropy-based measures of stochastic uncertainty. Significantly, Tsallis and Stariolo 
(1995) have already considered an extension of this kind in their paper on q-generalised of 
techniques simulated annealing.  

                                                 
11 Another related body of literature concerns fractional diffusion processes and fractional calculus. For an 
overview see Scalas (2005), Gorenflo, Mainardi and Scalas (2004), and Podlubny (1999). 



6. A Keynesian perspective on conventional finance theory 
Current asset pricing models separate portfolio decisions from those made about production 
and physical investment. For example, the well-known Lucas tree mode treats the dividend 
process as exogenously determined. When asset-pricing models are combined with stochastic 
growth models, the latter are usually predicated on implausible neoclassical foundations (like 
those of Real Business Cycle theory) where the real forces of (marginal) productivity and 
thrift are ultimately responsible for driving the dividend process (Brock, 1982). In such cases 
neither unemployment nor underutilisation of capacity can arise, other than as a temporary 
departure from the steady-state growth path (e.g. as certain variables jump instantaneously, 
overshooting or undershooting to keep the economy on a rational expectations trajectory 
which reflects fully anticipated, though longer-term adjustment costs).  

More significantly, the typical representative agent framework implicitly precludes the 
operation of any Keynesian fallacy of composition effects that might otherwise result in an 
insufficiency of effective demand. Similarly, long-run monetary neutrality is often implicitly 
guaranteed by block recursive structure of neoclassical synthesis models (see the discussion 
of this feature in Sargent, 1979). All of this, of course, completely ignores the extensive 
literature on the capital debates and the implications this debate has for how processes of 
economic growth should be modelled. In a multi-sectoral world where capital is 
acknowledged to be a reproducible good, the rather quaint notion that the marginal 
productivity of aggregate capital or labour could explain income distribution and growth 
must be abandoned. Needless to say, this realisation, has implications for the econometric 
estimation of production functions, and undermines much of the Old and New Growth 
Theory—in both its stochastic or non-stochastic variants—except for those models which 
have merely reproduced earlier discoveries on the part of Sraffa, von-Neumann and Leontieff 
(Salvadori, 2003).  

Juniper (2005) argues that the concept of uncertainty aversion closely corresponds to 
Keynesian notion of liquidity preference. While authors such as Dow and Werlang (1992) 
cite Frank Knight rather than Keynes, it is important to appreciate the critical differences 
between these two theorists. Ultimately, Knight believed that uncertainty aversion arises due 
to an inability on the part of certain individuals to specify the state space governing risk. 
Those who possess this ability are more likely to succeed in business enterprises. However, 
those who do not possess it themselves will not recognize this ability. Accordingly, it will be 
untraded, giving rise to the problem of a missing market. In contrast, Keynes adopted a more 
ontologically grounded view of uncertainty as something that pertains to long-term decision-
making. The main ontological basis for this uncertainty is the phenomenological reality of 
human freedom and the creative ability to intervene in history, so transforming the nature of 
economic institutions and processes. 

Like his predecessors—Keynes and Harrod—Hyman Minsky also embraced the instability 
principle, which is predicated on the notion that economic instability is an endogenous 
phenomenon. In Minsky’s version of events, periods of optimism are seen to give rise to 
behavior that, in more conservative times, might appear reckless: banks, households, and 
firms embrace more fragile financial positions, in the sense that (present value) break-even 
times for investment and points of turn-around in debt-redemption are increasingly deferred. 
Initially, this recklessness occurs at a time when existing rates of interest are relatively small, 
primarily due to low levels of liquidity preference. For example, expanding firms rely more 
on external sources of finance rather than on retained earnings. In general, each class of 
agents becomes more exposed to less diversified sources of income and to financial 
obligations that are more rigid and inflexible. As the whole economy becomes more and 
more vulnerable to adverse changes in interest rates or downturns in effective demand, 
liquidity preference begins to rise, perversely feeding into the very process that determines 
the structure of short term interest rates. 

 



Juniper (2005) has argued that a Minksyian analysis of financial instability would require an 
interweaving of epistemic and ontological variables. From an epistemic perspective 
uncertainty aversion reflects a greater sensitivity on the part of agents to the heightened 
consequences of any adverse movement in the spectrum of liquidity premia, these 
consequences, in turn, are (ontologically) determined by real changes in balance-sheet 
structures of economic agents: banks, households and firms. In a risk-sensitive, stochastic 
optimal control setting, as we have seen, each of these interwoven factors has a clear 
interpretation: in risk sensitive control theory, uncertainty aversion is represented by the 
parameter in the penalty function determining where agents are situated along the spectrum 
between H2 and H-infinity control; whereas financial instability would be accommodated by 
an expansion in the stochastic uncertainty constraint representing model uncertainty, external 
perturbation and observation error.  

In many applications of risk-sensitive control, where penalty functions belong to the 
exponential family (reflecting constant absolute risk aversion), the stochastic uncertainty 
constraint represents the difference between free and bounded entropy. Presumably, in 
applications of Tsallis entropy the penalty function would conform to the power law family 
and the stochastic uncertainty constraint would be determined by the difference between free 
and bound Tsallis entropy. In a Minskian or Keynesian world, therefore, interactions between 
financial institutions, firms and households are seen to be crucial. In particular, uncertainty 
aversion or changes in liquidity preference would directly influence the decisions that firms 
make about real (physical) investment, not just the decisions that investors make about 
financial investment. Minsky’s work has spawned a variety of attempts to model financial 
instability using tools of non-linear dynamic simulation and analysis (Taylor & O’Connell, 
1985; Foley, 1997; Keen, 1995, 1999, 2000; Chiarella and Flaschel, 2000). However, little of 
this analysis has spilled over to influence quantitative finance theory. 

Needless to say, this interdependence between decisions of banks, households and firms has 
grown in importance due to the privatisation of social security, increased financial 
investment by middle-class households (not least through occupational superannuation); 
attempts by governments to fund of contingent liabilities through creation of funds leveraged 
over private sector activity, and an increasing reliance at all levels of government on pro-
cyclical investment by private sector via private-public partnerships.  

7. Conclusion 
The literature on multi-fractals, Tsallis distributions, and anomalous diffusion processes is 
growing rapidly. New applications of Tsallis entropy to decision-making are occurring on a 
weekly basis. In this context, it is inevitable that many of the issues described within this 
paper and often discussed in speculative terms, will become the focus of formal analysis and 
detailed empirical research.  

While uncertainty aversion is recognized as fundamental determinant of financial investment, 
it is less well appreciated that uncertainty aversion can readily be extended to non-financial 
investment through Real Options theory. There is a growing recognition of market 
incompleteness amongst Real Options theorists, because the risks applying to non-financial 
investment make replication difficult. This necessitates the application of either utility 
maximising principles or the determination of equivalent martingale measures using relative 
entropy or Esscher transforms that are, themselves dual to utility functions. It is thus only a 
short step from here to recognition of the need to apply Choquet utility theory and other 
forms of uncertainty aversion in real options theory, as recognised in the literature on 
environmental sustainability (Basili, 1998).  

This step having been made, the macroeconomic implications for finance theory are that 
variations in uncertainty aversion will now influence the dividend process itself, via 
multiplier effects spreading from investment to overall levels of effective demand and 
aggregate activity. Fluctuations in investment are the main culprits in explaining movements 



in the point of effective demand, though the heightened responsiveness of consumer 
sentiment to developments in the markets for financial assets and property is of increasing 
concern to regulatory authorities. Each of these two sources of fluctuations, in turn, is 
primarily driven by variations in uncertainty aversion. Hysteresis effects would then 
influence the actual long-run rate of growth. This makes financial processes far more 
complex than those predicated either on exogenous dividend streams (the Lucas tree model) 
or those associated with stochastic growth models (Brock, 1982). And Keynesian insights 
into the nature of financial markets can no longer be precluded from investigation on 
erroneous ontological grounds. However, this paper has also been motivated by the 
conviction that research into aspects of this broad set of economic and financial phenomena, 
including uncertainty aversion, would no doubt benefit greatly from the insights and tools 
developed within non-extensive statistics. 

Another important question is why power law distributions and scale-invariance arise in 
financial processes. In physics, new interpretations of quantum mechanics have shown how 
the Schröedinger equation can be derived within Newtonian mechanics through the 
imposition of scale invariance and non-differentiability (Nottale, 1995). However, these 
fractal properties of space and time only become pertinent at cosmological or sub-atomic 
scales. In finance theory and economics, scale invariance obtains at scales far removed from 
these extremes. However, the relativity (linear homogeneity) of all prices and the 
arbitrariness of choice entailed by any choice of numeraire, points to one possible avenue of 
interpretation (see Hoogland & Neumann). From this perspective, issues raised by Piero 
Sraffa’s attempt to solve Ricardo’s problem of finding a standard of value that would be 
invariant to changes in income distribution, which is nowadays usually approached through a 
reworking of the Perron-Fröbenius theorems, come to the fore. Andrew’s Wittgensteinian 
insight into Sraffa’s position suggests that Sraffa was all too aware of the impossibility of 
this task. No standard could possibly be invariant to changes such crucial factors as income 
distribution, the rate of technological change, the presence of increasing or decreasing returns 
to scale in particular industrial sectors, and heterogeneity of labour. It is this very stumbling 
block, which has kept Marxist analysts chasing their tails for the last two decades. At the 
same time, the work of Tsallis and others on social networks highlights the empirical validity 
of power-law scaling in network effects (Abe and Suzuki, 2003). No doubt, the multi-fractal 
nature of news arrival processes may contribute to the generation of multi-fractal price 
distributions. 
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