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1. Introduction 
Residential segregation can be defined as ‘the extent to which individuals of different groups 
occupy or experience different social environments’ (Reardon and O’Sullivan, 2004: 122-
123). In the USA research has demonstrated a powerful role for residential segregation by 
ethnic group and gender in reinforcing inequality and promoting labour market segregation, 
which is manifested in income polarisation and differential rates of unemployment (see, for 
example, the review by Charles, 2003, but see Peach, 2006 for a discussion of the positive 
effects of residential segregation). Three explanations of persistent residential segregation 
feature in the US literature, namely objective differences in socioeconomic status, prejudice 
and housing market discrimination (Charles, 2003: 176).  

Thus the impact of residential segregation by race and gender on the spatial distribution of 
un/employment is an important area of empirical enquiry. However, residential segregation is 
the outcome of the complex interplay of social and economic processes. Massey and Denton 
(1988: 309-310) identify five dimensions of segregation. Evenness is the degree to which 
populations are distributed uniformly across space (areal units). Exposure (isolation) 
measures the extent to which the different (same) population groups share common areas. 
Clustering identifies the extent to which members of a minority group are located close to 
each other. Concentration refers to the degree to which a group agglomerates in space. 
Centralisation measures the extent to which a group resides close to the centre of an urban 
area.  

The most frequently used measures of segregation, namely evenness and isolation are 
aspatial because they fail to take into account the proximity of population groups between, as 
well as within, areal units which gives rise to the so called checkerboard problem (White, 
1983). Also neither spatial nor aspatial indexes typically address the Modifiable Areal Unit 
Problem (MAUP), even though the former take account of proximity, because the data are 
typically aggregated into population counts across specific areal units which are sensitive to 
the chosen boundaries, rather than observations being precisely located in space (Reardon 
and O’Sullivan, 2004: 123-124). These areas are normally administratively determined and 
based on high levels of internal homogeneity which distorts measurement (O’Sullivan and 
Wong, 2007: 148). In addition, the spatial scale over which the segregation process occurs is 
not known a priori (Lee et al, 2006). 

With the exception of Healy and Birrell (2003) and a series of articles by Forrest, Johnston 
and Poulsen, in varying order (2001, 2002a,b, 2004, 2006, 2007), there has been limited 
research on the measurement and interpretation of ethnic segregation by residence in 
Australian cities.     

This paper has two objectives:  i) an assessment of the use of kernel density estimation as a 
means of spatially smoothing population data prior to the measurement of residential 
segregation (Martin et al, 2000; O’Sullivan and Wong, 2007); and ii) a brief exploration of 
the merits of different spatial measures of residential segregation, given the arguments of 
Reardon and O’Sullivan (2004) and other contemporary literature. These issues will be 
illustrated by the measurement of residential segregation in the Sydney Commuting Area in 
2001, using an index of unevenness and one of exposure with a range of different parameter 
values for the underlying kernel density estimation to test the sensitivity of the magnitudes. 

2. Spatial smoothing 
Reardon and O’Sullivan (2004: 153-154) note that population data are normally defined 
across discrete areas, rather than by individual location. Population counts at centroids can be 
replaced by uniform densities for the population groups across each area, but this approach 
can cause sharp discontinuities at the boundaries, which is likely to distort the computation of 
segregation measures. 



 

The authors (2004:  128-131) develop a coherent conceptual framework within which to 
incorporate space into aspatial indexes of evenness and exposure and provide multi-group 
analogues to the construction of pairwise indexes. They overcome the rigid boundaries of the 
enumeration units through the calculation of local rather than areal unit based populations to 
underpin index computation.  

 Population groups live in J areas within region R. Typically they are assumed to be located 
at the corresponding areal centroids, that is at points p,q,r… A non-negative proximity 
function ),( qpφ  is defined between all pairs of these discrete points where 

),(),( pqqp φφ = and ),(),( qqpp φφ = for all Rqp ∈,  and a larger value of the function 
denotes closer proximity. Population measures are redefined within the local environment of 
each sample point via the proximity functions. These redefined measures can be used in the 
standard aspatial segregation measures to convert them to spatial measures (Reardon and 
O’Sullivan, 2004:  136-141). The proximity function could be constructed to reflect specific 
geographic or other features of the region which enhance or inhibit proximity and hence 
access. 

In their study of the impact of scale on the magnitude of segregation, Lee et al (2006) first 
calculate population counts based on track densities across a grid of 50m * 50m cells. These 
counts are then smoothed (Tobler, 1979), prior to the application of the proximity function. 

2.1 Kernel density estimation 
An alternative form of data smoothing is based on kernel density estimation (KDE) (Martin 
et al, 2000; O’Sullivan and Wong, 2007). KDE entails the estimation of a probability density 
function (pdf) from a data sample. Under KDE, a particular functional form is applied across 
the sample data and summed to yield a single empirical estimate of the underlying pdf, y(x) 
(O’Sullivan and Wong, 2007:  152). This can be written as 
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where Xi (i = 1,2,…,n) denotes the sample data.  

Only sample observations which lie within the bandwidth, h, of x are included in the 
estimated y(x). A wide bandwidth leads to over-smoothing, so that key features of the pdf are 
hidden, whereas under-smoothing leads to an accentuation of the peaks of the estimated pdf. 
There a number of common univariate kernel functions including the Gaussian, triangular, 
triweight, epanechnikov and the quartic. KDE is crucially dependent on parameter values, in 
partiucular the magnitude of the bandwidth, h. 

The extension of a univariate KDE to the spatial (two dimensional) case is straightforward 
with the kernel function normally assumed to be radially symmetric, so that all sample points 
within a distance h of x contribute to the estimated y(x). When population counts are located 
at a discrete number of points, typically centroids, they are counted as separate data points 
(O’Sullivan and Wong, 2007: 153).  

Assuming that the bandwidth is chosen appropriately, so that it crosses the boundaries of the 
areal units, smoothing takes place which addresses the problems caused by non-interaction 
across boundaries. While, in principle, the pdf can be computed for any Rx ∈ , in practice a 
finite resolution grid must be imposed on the region which defines the locations at which pdf 
estimates are made (O’Sullivan and Wong, 2007: 153). These points can be used in index 
calculations. 

Martin et al (2000: 345) adopt a weighting schema which is used for the construction of 
standard UK surfaces:  
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where k is the kernel width and dij denotes the distance between the sample data point, j and 
i, a point on the resolution grid. Then the estimated population at point i can be written as:  
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so that only sample points within distance k of grid point i are included. 

The parameter α impacts on the shape of the distance decay function. Martin et al (2000: 
345) note that values of α greater than unity generate a more peaked kernel, a value of unity 
yields an approximately uniform decline from the centroid to the kernel’s edge, whereas a 
parameter value of less than unity results in a flatter kernel with rapid decay close to the 
edge. O’Sullivan and Wong (2007: 153-154) recommend that the bandwidth lie between 2 
and 5 times the grid resolution. There are also other forms of spatial data smoothing, 
including pycnophylactic smoothing (Tobler, 1979) and dasymetric mapping (Holt et al, 
2004).  

3. Segregation indexes 
Research on the extent of residential segregation can take three broad forms:  i) a time series 
study based on a given region; ii) a cross section study of different regions; and iii) an intra-
regional study based on local measures of segregation (Wong, 2002, Brown and Chung, 
2006). We do not consider local measures in this paper.  

Brown and Chung (2006) claim that the Massey and Denton schema can be simplified by 
locating concentration at the other end of the continuum from evenness. The shrinking of the 
dimensions of residential segregation remains an empirical rather than a theoretical question, 
however. A Concentration index compares the distribution of areas by size with the 
corresponding distribution of a particular racial group. A measurement of Evenness such as 
the Dissimilarity Index for blacks and whites could be zero, yet the corresponding 
concentration index could be very high (or zero) because the populations exhibit significant 
variation in their spatial density (or exhibit uniform density) across space. Also Brown and 
Chung (2006: 129) argue that spatial clustering is representative of low exposure to other 
groups, but Reardon and Firebaugh (2002a: 126) argue that it is clustering and evenness that 
appear at opposite ends of the continuum. Brown and Chung (2006) provide empirical 
support for the above claims in the form of high correlations between evenness and 
concentration, and clustering and exposure, respectively. The index measure of Centrality is 
increasingly redundant given the emerging polycentric, multimodal and sprawling cities 
(Brown and Chung, 2006: 126).  

Johnston, Poulsen and Forrest (2007) examine the five dimensions of segregation by 
measuring twenty indexes based on data for US metropolitan areas for the period 1980-2000 
and using principal components factor analysis. They conclude that residential segregation 
can be measured across two dimensions, namely separation which encompasses unevenness, 
isolation and clustering, and location which captures centralisation and concentration.  

Building on Reardon and Firebaugh (2002b) and Grammis (2002), and the earlier reviews 
byJames and Taeuber (1985) and Massey and Denton (1988), Reardon and O’Sullivan (2004: 
131-136) recast criteria for aspatial indexes into an equivalent form for aggregate multi-
group spatial indexes (see also Watts, 2005 for a detailed discussion of both aspatial and 
spatial indexes). Until these papers, the development of spatial indexes of segregation had 
been fragmented and lacked a coherent conceptual basis (see, for example, Jakubs, 1981; 
Morgan, 1983; Morrill, 1991; and Wong, 1993, 2002, 2003).  

 



1. Scale interpretability:    

If the group proportions are the same in the local environment of each individual, then the 
spatial segregation index should take the value zero, whereas a segregation index should 
reach its maximum value (typically normalised at unity), if the local environment of each 
individual is mono-racial. This criterion is motivated by the desire to make universal 
comparisons of index magnitudes across time and space. However, if the chosen index is not 
margin-free (see below), then simple index comparisons can be misleading. 

2. Arbitrary boundary independence:   

A spatial segregation measure should be independent of the definitions of areal units. This 
demanding criterion requires that all individuals be precisely located in space and there is a 
unique and exhaustive set of spatial proximities for all pairs of locations. The MAUP would 
be overcome, but the scale at which segregation is measured would remain unresolved.  

3. Location equivalence:   

Points p,q,… within a tract can be aggregated if their population compositions are the same 
within their local environments, and they satisfy cqp =),(φ  and ),(),( sqsp φφ = for all 
points s lying outside the tract. These conditions are demanding and are unlikely to be 
satisfied. Location Equivalance is the spatial analogue of Organisation Equivalence, which 
enables the aggregation of units, such as occupations and schools, which have the same 
gender or race composition (Reardon and O’Sullivan, 2004: 132-133).  

4. Population density invariance:   

If the population density of each group m at each point p is multiplied by a constant factor, 
then segregation is unchanged.  

5. Composition invariance:   

If the number of individuals in a particular group increases uniformly across all locations 
within the region, and the numbers and spatial distribution of all other groups remain 
unchanged, then the measure of segregation is unchanged. 

6. Transfers:   

The principle is based on the Pigou-Dalton principle which appears in the income inequality 
literature (e.g. Shorrocks and Wan, 2005). A group m individual is transferred from point p 
to q, without replacement. If the proportion of group m in the local environment of all points 
closer to p than q is greater than the proportions of group m in points closer to point q, then 
segregation is reduced (Reardon and O’Sullivan, 2004: 134-135). This criterion is 
problematic. First the point densities are upset by the one-way transfer. Second points close 
to both p and q may all be dominated by group m, (relative to its overall population share), so 
that the transfer reduces the group m dominance of points close to p and increases dominance 
for points close to q. As a consequence the criterion requires that the index be non-linear. 
Finally none of the indexes analysed by the authors satisfy the criterion (p.151), so it is 
ignored. 

7. Exchanges:  

Reardon and O’Sullivan (2004: 135) identify two forms of exchange in which a group m 
individual at p is replaced by a group n individual from q. In the first case points close to p 
have a greater proportion of group m and points near point q have a greater proportion of 
group n. Compliance with this condition implies a non-linear index. The second version 
involves the same exchange but the proportions of group m at points near to and including 
point p are greater than the corresponding proportions of group n at these points, and 
conversely for point n.  



The Information Theory and Relative Diversity Indexes only satisfy both exchange criteria, if 
spatial symmetry is assumed, which can be satisfied by two forms of geography, both of 
which are highly restrictive (Reardon and O’Sullivan, 2004: 156-157). A weak version of 
both types of Exchange is satisfied by the Index of Dissimilarity, but again spatial symmetry 
must be assumed. Consequently this criterion is also ignored.  

8. Additive Spatial Decomposability 

This criterion requires that the grouping of points (areal units) into fewer, larger areas 
enables total spatial segregation to be represented by the sum of within area and between area 
components. Reardon and O’Sullivan (2004: 147-149) acknowledge that an interaction term 
would need to be included in the decomposition to reflect the impact on the within area (say 
k) measure arising from points, q outside k via the proximity function, ),( qpφ  where kp ∈ . 
If significant in size, the interaction term clouds the interpretation of the other two 
components of the decomposition. Also, the within group index measures use the within 
group population shares as the benchmark, rather than the regional population shares, so that 
their interpretation is not straightforward (Brown and Chung, 2006). 

9. Additive Grouping Decomposability 

If M groups are clustered in N (<M) supergroups, then a segregation measure should be 
decomposable into a sum of independent within- and between-supergroup components. 
Again local benchmarks are being employed in the within group component. This condition 
is only satisfied by the Information Theory Index. 

The set of criteria which spatial segregation indexes should satisfy must be aligned with the 
particular objectives of the empirical research. In particular, any time series analysis of 
spatial segregation across a region would be difficult to interpret due to the impact on the 
index magnitude of changing overall population shares and the associated changes in the 
population densities across the local environments.  An index that neutralises the impact of 
these changes is said to be margin-free (independent of the margins). This requires both 
Composition Invariance (see above) as well as Unit Invariance, that is the index measure is 
independent of the population density within the local environment of a point as long as the 
group composition of the local population stays unchanged. 

Dawkins (2004: 837) rejects unit invariance as a criterion at least for the measurement of 
residential segregation. He notes that Fluckiger and Silber (1999) do not support the 
requirement that the index be margin free, since the margin totals impact on both the 
dispersion and shape of the distribution of segregation ratios, which contribute to the overall 
pattern of segregation. He also argues that the margin free requirement is mainly advocated 
by researchers studying labour force segregation, which can be more easily specified in 
‘standardised units of analysis’ whereas residential segregation is often measured across 
neighbourhood units that are defined in ‘highly idiosyncratic ways’ (Charles and Grusky, 
1995). This is an unpersuasive argument because these invariance principles are designed to 
enable rigorous comparisons over time. 

Dawkins is indirectly highlighting the point that cross-sectional comparisons of residential 
segregation are highly problematic, even if the MAUP is ignored, given the vagaries of the 
underlying spatial units which cannot be considered as equivalent say across cities, because 
they are not uniform in area or in population and may be unequal in number too. As noted 
above, choosing an index which exhibits Scale Interpretability does not solve the problem of 
making meaningful cross-section comparisons. These problems remain for cross-national or 
cross-regional studies of (aspatial) occupational segregation, unless a uniform occupational 
classification is adopted.   

Unless a smoothing procedure is adopted, even time series comparisons of residential 
segregation measures for a particular region are likely to be unsatisfactory due to the 
changing spatial definitions of the underlying units and possibly the number of units making 



up a particular regional area. By imposing a consistent locational grid on the region, KDE 
does overcome the problem of changing spatial definitions, which the simple construction of 
local environments around the sample points does not. However the unit invariance issue is 
not neutralised through the construction of a locational grid, because the point population 
densities not only differ but they change in relative terms over time. 

Watts (2003) showed that the aspatial analogues of Locational Equivalence and Unit 
Invariance are in fact inconsistent. This means that the adoption of a margin free index is 
unsatisfactory. The aspatial log index recommended by Grusky and Charles (1998) for the 
analysis of occupational segregation has serious deficiencies (Watts, 1998b). The alternative 
is to adopt a decomposition procedure, as argued by Karmel and MacLachlan (1988) and 
Watts (2003) with respect to occupational segregation. This approach can be adopted with 
non-margin-free indexes defined over smoothed spatial data.  

In a series of papers (2001, 2002a,b, 2006, 2007), Forrest, Johnston and Poulsen address the 
measurement issue and explore the pattern of ethnic segregation in cities, including Sydney, 
Auckland and New York.. They argue that global indexes over-simplify complex 
phenomena, and that making cross section or time series comparisons based on index 
measurement is difficult, due to indexes being relative, in particular those representing the 
five dimensions of segregation  (Poulsen, Johnston and Forrest, 2002:  246).  

Measures of ethnic concentration should i) maintain a close link between measurement and 
theory; ii) enable comparability both within a city and across ethnic groups and among cities 
at the national and international level; iii) represent absolute indicators which directly 
illuminate the segregation issue (Johnston, Poulsen and Forrest, 2002:  246). 

Poulsen, Johnston and Forrest (2002) argue that there should be a focus on three aspects of 
the residential patterns of ethnic groups, namely i) residential concentration, ie the areas in 
which an ethnic group predominates; ii) the extent of assimilation, that is the sharing of 
residential space with the host society; and iii) encapsulation, that is the residential isolation 
of a particular ethnic group from the host group and other ethnic groups.  

Johnston, Poulsen and Forrest (2002) construct a concentration schedule depicting the total 
percentage of the particular ethnic population (vertical axis) residing in tracts where this 
ethnic group represents more than a prescribed share of the local population. The schedule 
extends Peach’s work beyond a single threshold. Johnston, Poulsen and Forrest (2002:  248) 
claim that the schedule provides data as to the extent of spatial segregation at a specified 
threshold, which is comparable over time and space. This metric is alleged not to be affected 
by either the group’s size or changes in its size over time. Poulsen, Johnston and Forrest 
(2002: 233) acknowledge that the thresholds are to some extent arbitrary. In a later paper, 
(Poulsen and Johnston, 2006) a typology with 6 ranges of concentration which are mutually 
exclusive is adopted.  

Watts (2007) argues that both representations of concentration are sensitive to overall 
population shares and conflate the dimensions of unevenness and isolation, because time 
series comparisons of concentration reflect both changes in population shares of the ethnic 
groups, and changes in the spread of the particular ethnic group across the tracts. Also, both 
representations are aspatial, because by treating space just as a source of difference, they fail 
to capture the spatial relationships between areas, as well as being sensitive to the MAUP. 
While in a later study, (Johnston et al, 2007), they argue that the five dimensions of 
segregation can be reduced to two, it still makes little sense to construct a measure which 
conflates the key dimensions of unevenness and isolation.  

4. Index measurement and data 
In this paper, in the absence of 2006 Census data, which would allow time series 
comparisons, we will adopt simple bivariate indexes of unevenness and exposure, which are 
considered the key dimensions of spatial segregation.  The Index of Dissimilarity (ID) 



(Duncan and Duncan, 1955) and the Exposure index (Lieberson, 1981) are used, mainly 
because they are relatively easy to interpret and are frequently used. Despite enthusiastic 
endorsement by Reardon and O’Sullivan (2004), the Information Theory index, which draws 
on Theil (1972), is not employed, because the additional criteria (as compared to ID) that it 
unconditionally satisfies, namely Exchanges (type 2) and the two Additive Decomposability 
Properties are of limited value. 

ID can be written as 
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where Hi, Ni respectively represent the size of the Host and Minority populations within area 
i. ID measures the total percentage of one group which must be removed without replacment 
to equalise the population distributions across all locations 1,2,…L. It has a maximum value 
of unity, if all areas are monoracial, and a minimum value of zero.  

The Exposure index measures the degree of potential contact, or interaction, between a 
minority and a host group (; Massey and Denton, 1988:  287). Thus, if members of the two 
groups share common areas, the index will be quite large. The exposure of the host 
population to the minority population can be written as:  
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where ti denotes the total population in area, i. The first term is the probability that a member 
of the host population chosen at random resides in area i and the second term denotes the 
probability that a member of the minority population is encountered in area i. The index has a 
maximum value of N/T where T is the total population of the region. This occurs if the 
minority population is distributed uniformly across the L areas so that (Ni/ti) is uniform (i = 
1,2,…L) and hence equal to N/T. Thus this index is sensitive to overall population shares. 

We utilise 2001 Census data of population by country of birthplace for 6991 Collector 
Districts spread across 52 Statistical Local areas which are largely self-contained with respect 
to commuting patterns. Thus the residents of this region work within the region. Seven CDs 
(1210715, 1280214, 1291808, 1312403, 1410215, 1412610, 1421904) had zero population 
leaving 6984 observations. The remaining CDs had a minimum population of seven and a 
maximum of 2336. Consistent with the work of Poulsen et al (2004), we define the host 
population as native born Australians and residents who were born in English speaking 
countries, namely Canada, Ireland, New Zealand, United Kingdom and United States. NESB 
residents represent 19.13% of the local population, which represents the maximum value of 
HPN. Poulsen et al (2004) also utilise ancestry data, but those data will be employed in later 
work. 

The latitude and longitude are available for the centroid of each Collector District. Using 
M_Map v1.4 code in Matlab devised by Rich Pawlowicz at the University of British 
Columbia, the latitudes and longitudes were projected onto Cartesian space using the 
Lambert Conformal Conic, which appears well suited for this relatively small area. . The 
location grid is defined within minimum and maximum values of the x coordinate (-0.0136, 
0.0101) and y coordinate (-0.0189, 0.0129). Each range is divided into an equal number of 
segments ranging from 30 to 80, yielding a locational grid of between 900 and 6,400 points. 
The bandwidth is adjusted in line with changes in the number of segments to maintain a ratio 
to the grid resolution on the x axis of between 2.5 and 5.0. Values of the kernel parameter α 
between 0.25 and 2.50 are adopted in increments of 0.25.  

The weighting procedure (2) does not maintain the regional population over the locational 
grid. Uniform adjustment of the respective population numbers across each location to bring 
them into line with the raw data was undertaken, but due to Composition Invariance, the ID 



index is unaffected, whereas the Index of Isolation is sensitive to relative population 
numbers. 

5. Results 
Tables 1-3 shows the magnitudes of the ID and the exposure indexes for the different 
parameter values. A number of general observations can be made about the computed ID 
measures. First, increasing the number of points in the locational grid leads to a consistent 
increase in the ID index, which is a well known result. Second, reducing the bandwidth 
around each point for a given number of points on the locational grid, increases the ID index 
due to reduced smoothing, which is a well-known result. Third, higher values of the 
exponent, α, yield a more peaked kernel and a lower value of the ID index, except for a 
parameter value of 2.50. Fourth, the final choice of location grid yields 6,400 points, 
relatively close to the number of sample observations, but the levels of the computed index 
ID for the different levels of α are significantly below the original ID value of 0.3759 for the 
6984 CDs, which demonstrates the impact of smoothing.. Local values of an appropriate 
index of unevenness over the location grid would also be informative. 

Turning to the interaction indexes:  First, increasing the number of points in the locational 
grid along with changing the bandwidth consistently reduces the index magnitude. Second, 
higher values of the exponent, α, yield lower values of the interaction indexes. Third, in 
contrast to the ID index, the exposure indexes assume greater values than those associated 
with the 6,984 CDs of 0.1651 and 0.6976. 

6. Conclusion 
Historically the measurement of residential segregation has been contested because there was 
no unanimity about its conceptualisation although writers now increasingly focus on 
measures of unevenness and exposure. However differences persist with respect to both the 
appropriateness and importance placed on different criteria, which reflect, in part, the 
absence of a clear articulation of the empirical application for a particular measure. 

In this paper it is argued that meaningful comparisons across space of the extent of 
segregation cannot be necessarily rigorous, even if the chosen index lies between 0 and 1. On 
the other hand, an index that can be decomposed to neutralise the impact of the margins can 
yield insights about overall trends in segregation, if the relevant data can be analysed across a 
fixed grid of points in space, following a smoothing process. Smoothing will also address the 
MAUP and the checkerboard problem. 

This paper has examined a particular form of spatial smoothing used in the UK (Martin et al, 
2000), after projection of the data onto Cartesian coordinates. Across different parameter 
values, the sets of index values are relatively consistent, but there is no guidance a priori as to 
the appropriate parameter values. The analysis of data from both the 2001 and 2006 Censuses 
will provide a better indication as to whether the underlying Kernel specification yields 
consistent time series results. In addition, the scale of segregation, the edge problem 
associated with Kernel estimation (Cowling and Hall, 1996) and the adoption of integration 
of index values will be addressed in future work. 
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Table 1 ID Index Values for Different Parameter Values of the KDE. 
  Exponent α of Kernel equation (2) 
 B/width 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 
30*30 * 5 0.1929 0.1966 0.2011 0.2057 0.2103 0.2145 0.2181 0.2212 0.2242 0.2276 

 * 2.5 0.2488 0.2533 0.2571 0.2603 0.2630 0.2657 0.2683 0.2706 0.2727 0.2744 

40*40 * 5 0.2178 0.2221 0.2260 0.2307 0.2348 0.2384 0.2414 0.2446 0.2477 0.2507 

 * 2.5 0.2668 0.2698 0.2723 0.2750 0.2777 0.2802 0.2825 0.2848 0.2868 0.2887 

50*50 * 5 0.2356 0.2396 0.2436 0.2474 0.2511 0.2544 0.2575 0.2604 0.2631 0.2654 

 * 2.5 0.2784 0.2814 0.2838 0.2860 0.2883 0.2903 0.2921 0.2937 0.2952 0.2967 

60*60 * 5 0.2482 0.2525 0.2563 0.2598 0.2628 0.2657 0.2683 0.2706 0.2729 0.2749 

 * 2.5 0.2864 0.2892 0.2915 0.2935 0.2954 0.2973 0.2994 0.3013 0.3033 0.3050 

70*70 * 5 0.2582 0.2623 0.2658 0.2689 0.2716 0.2742 0.2764 0.2785 0.2804 0.2822 

 * 2.5 0.2919 0.2944 0.2970 0.2993 0.3015 0.3035 0.3055 0.3072 0.3088 0.3104 

80*80 * 5 0.2664 0.2697 0.2727 0.2756 0.2783 0.2806 0.2827 0.2847 0.2866 0.2883 

 * 2.5 0.2978 0.3004 0.3026 0.3049 0.3072 0.3093 0.3111 0.3128 0.3146 0.3162 

Notes:  Bandwidths set at multiples of 2.5 and 5.0 of the grid resolution. 
Source:  Table B06 (Collector Districts), Basic Community Profiles 2001 Census 



Table 2 Exposure Index (HPN) for Host Population, H, based on Different Parameter Values for KDE 
  Exponent α of Kernel equation (2) 
 B/width 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 
30*30 * 5 0.1852 0.1849 0.1846 0.1843 0.1840 0.1837 0.1835 0.1832 0.1829 0.1827 

 * 2.5 0.1813 0.1809 0.1805 0.1802 0.1798 0.1795 0.1792 0.1790 0.1788 0.1786 

40*40 * 5 0.1837 0.1833 0.1830 0.1826 0.1823 0.1820 0.1817 0.1814 0.1811 0.1809 

 * 2.5 0.1796 0.1792 0.1788 0.1785 0.1782 0.1780 0.1777 0.1775 0.1773 0.1771 

50*50 * 5 0.1824 0.1820 0.1816 0.1813 0.1809 0.1806 0.1803 0.1800 0.1798 0.1796 

 * 2.5 0.1783 0.1780 0.1777 0.1774 0.1771 0.1769 0.1767 0.1765 0.1763 0.1761 

60*60 * 5 0.1813 0.1809 0.1805 0.1802 0.1798 0.1795 0.1792 0.1790 0.1788 0.1786 

 * 2.5 0.1774 0.1771 0.1769 0.1766 0.1764 0.1761 0.1759 0.1757 0.1755 0.1754 

70*70 * 5 0.1804 0.1800 0.1796 0.1793 0.1789 0.1787 0.1784 0.1782 0.1780 0.1778 

 * 2.5 0.1768 0.1765 0.1762 0.1759 0.1757 0.1755 0.1753 0.1751 0.1749 0.1747 

80*80 * 5 0.1796 0.1792 0.1788 0.1785 0.1782 0.1780 0.1777 0.1775 0.1773 0.1771 

 * 2.5 0.1762 0.1759 0.1756 0.1754 0.1751 0.1749 0.1747 0.1745 0.1743 0.1742 

Notes & Source:  see Table 1. 



Table 3:  Exposure Index (NPH) for Minority Population, N based on Different Parameter Values for KDE 
  Exponent α of Kernel equation (2) 
 B/width 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 
30*30 * 5 0.7827 0.7816 0.7803 0.7791 0.7778 0.7766 0.7754 0.7742 0.7732 0.7721 

 * 2.5 0.7664 0.7647 0.7630 0.7615 0.7601 0.7588 0.7576 0.7565 0.7556 0.7547 

40*40 * 5 0.7764 0.7749 0.7734 0.7720 0.7705 0.7692 0.7679 0.7667 0.7656 0.7646 

 * 2.5 0.7589 0.7573 0.7558 0.7545 0.7533 0.7522 0.7512 0.7503 0.7495 0.7487 

50*50 * 5 0.7709 0.7693 0.7677 0.7661 0.7647 0.7634 0.7621 0.7610 0.7599 0.7589 

 * 2.5 0.7537 0.7522 0.7509 0.7498 0.7487 0.7478 0.7469 0.7460 0.7452 0.7445 

60*60 * 5 0.7663 0.7646 0.7630 0.7614 0.7600 0.7588 0.7576 0.7565 0.7556 0.7547 

 * 2.5 0.7500 0.7487 0.7475 0.7464 0.7454 0.7444 0.7435 0.7427 0.7419 0.7412 

70*70 * 5 0.7624 0.7607 0.7591 0.7576 0.7563 0.7551 0.7541 0.7531 0.7522 0.7514 

 * 2.5 0.7472 0.7459 0.7447 0.7436 0.7426 0.7416 0.7407 0.7399 0.7392 0.7384 

80*80 * 5 0.7590 0.7574 0.7559 0.7545 0.7533 0.7522 0.7512 0.7503 0.7495 0.7487 

 * 2.5 0.7446 0.7434 0.7423 0.7412 0.7402 0.7393 0.7384 0.7376 0.7369 0.7362 

Notes & Source:  see Table 1. 
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