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1. Introduction 

1.1 Fractal Phenomena and Fractional Brownian Motion 
Different forms of calculus have evolved rapidly in recent years motivated by the 
requirement to explain turbulent and fractal processes of both natural and social 
origins. Examples of the former include rain patterns, river flooding, wind turbulence 
in canopies, and a variety of quantum mechanical phenomena. Examples of the latter 
include internet communications, network effects and the behaviour of financial asset 
prices. Multi-fractal processes of anomalous diffusion have also been identified in 
statistical mechanics.  

In previous work (Juniper, 2005, 2006) the inter-relationship between generalised 
information measures such as Tsallis entropy, Coherent risk measures, the distortion 
measures used in the actuarial sciences, the phenomenon of non-extensivity in 
statistical mechanics and decision-making under uncertainty, has been highlighted. 

The objective of this paper is to review a variety of calculus-based approaches to the 
analysis fractional processes, including conventional fractional calculus, the Fα-
calculus, the generalised Jackson calculus, and the Wick-Ito calculus are investigated. 
Where relevant, the specific eigenfunctions, Laplace transforms, and solutions 
methods associated with the specific type of calculus are discussed. In this section of 
the paper, Fractional Brownian Motion is defined. Then fractal random walks are 
introduced as a bridge to a subsequent discussion of fractional differentiation and 
integration. Section 1.2 examines applications of the standard fractional calculus. 
Section 2 considers alternative approaches:  respectively the the Wick-Ito, Fα-, and 
generalised Jackson calculi. Concluding observations follow in Section 3. 

A FBM (Fractional Brownian Motion) process, {BH(t)} t ≥ 0, has the following 
properties:  

1. uniqueness 
2. H-self-similarity (a stochastic process {X(t)}t ≥ 0 is self-similar if {X(ct)}≈ {kX(t)} 

and is H-self-similar if k = cH, where H is a known Hurst parameter) 
3. it has stationary increments (E[(BH(t+h)-BH(h))(BH(s+h)-BH(h))] 

a. if H = ½ it has independent increments 
b. if H > ½ it has long-range dependence (i.e. ΣCov BH(1)-BH(n +1)- BH(n)) = 

∞) 
c. if H ≠ ½ it is non-Markovian and not a semi-Martingale 
d. the covariance between future and past increments is positive (negative) if 

H > (<) ½ . 
1.1.2 The Fractal Random Walk 
One way to approach such phenomena is to begin with the fractal random walk. 
Define a shift operator B such that its operation on a discrete data set Y shifts the 
index by one unit. 

.1−= jj YBY  

A simple random walk can now be written as (Picozzi &West, 2002: 3), 

( ) jjYB ξ=−1 . 

This can be generalised by considering the fractional difference equation, 
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For ⏐ε⏐ < 1, this can be written using the binomial expansion, 
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Using identities amongst gamma functions the binomial coefficients can be written as, 
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In contrast to the standard random walk, now the memory extends infinitely far back 
in time. The strength of the influence of remote fluctuations depends on the 
magnitude of the binomial coefficients. In cases where ε is an integer the gamma 
functions have simple poles and the binomial coefficient vanishes after ε + 1 time-
steps. Using Stirling’s approximation for gamma functions it can be shown that, 
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Accordingly, for k→∞, the coupling strength becomes (Picozzi & West, 2002: 3), 
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thus decreasing with increasing time-lag as an inverse power law. 

Letting ε = H – ½, the spectrum becomes, 

( ) .; 01
12 →≈ − ω

ω
ω HS  

That is, persistence obtains For 1 ≥  H > ½, while for ½ ≥  H > 0, the spectrum 
increases as a power law (anti-persistence). 

1.1.3 The Continuous Time Analog  
The continuous version of this fractional difference equation is, 

( )[ ] ( ) .; 10 ≤<= αξα ttYDt  

Rearranged into integral form, the equation can be written explicitly in terms of the 
Riemann-Liouville fractional integral (to be explicated below), 
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If ξ(t) is a δ–function correlated Gaussian process, the system response will be 
Gaussian but with a variance that increases as a power law in time as given by, 
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By induction it can be established that the nth derivative of the function f(t) is given 
by:  

( ) ( ) ( ) ( )rhtf
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Thus, if:  

( ) ( ) ( ) ( )∑
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

n

r

r
p

p
h rhtf

r
p

h
tf

0
11 , 

then, 
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Under the assumption that n →∞ as h → 0, we can take h = (t – a)/n and consider the 
following limit (n.b. in what follows, notationally, the left and right hand subscripts 
determine the interval of integration or differentiation which is read from left to right):  
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By induction, it can be established that [46]:  
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That this expression represents the p-fold integral can be established through 
integration of the relationship (Podlubny, 1999:  47):  
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so that, 
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where the integration is carried out p times. 

Podlubny establishes that for derivatives of arbitrary order (Podlubny, 1999:  52-55), 
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under the assumption that the derivatives f(k)(t), k = 1,2,…, m + 1 are continuous in the 
closed interval [a, t] and that m is an integer number satisfying the condition m > p – 
1. This is the Grünwald-Letnikov version of the fractional derivative. Riemann-
Liouville Fractional Derivatives (represented below by the bold D) are defined by 
viewing the above expression as a particular case of the following integro-differential 
equation (Podlubny, 1999:  62), 
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Podlubny confirms that the operators of fractional differentiation commute (Podlubny, 
1999:  59-62). 
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A similar compositional expression also holds for Riemann-Liouville derivatives 
(Podlubny, 1999:  74). The k – nth derivative of a function f(t) can be written as 
(Podlubny, 1999:  65), 
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Podlubny (1999:  63-4) derives this equation from the Cauchy formula, itself 
established through induction. Here, Dk denotes k iterated integrations. From this 
equation he establishes the property (Podlubny, 1999:  65-7), 
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through direct substitution and simplification. Moreover, he establishes that 
(Podlubny, 1999:  70-1), 
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for kqk <≤−≤ 10 . 

Unfortunately, the Riemann-Liouville approach leads to initial conditions containing 
the limit values of the Reimann-Liouville fractional derivatives at the lower terminal t 
= a. Although such problems can be solved mathematically, there is no known 
physical interpretation for such initial conditions (Podlubny, 1999:  78). Accordingly, 
M. Caputo proposed an alternative definition of the fractional derivative, 
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For the Caputo derivative the following relationship obtains (Podlubny, 1999:  81), 
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The differentiation operators on the left-hand side are interchanged for the Riemann-
Liouville derivative. 

1.2 Applying the Fractional Calculus 
1.2.1 The Fractional Derivative  
Hartley and Lorenzo (2002), define the fractional-order integral using the Riemann-
Louisville fractional integral, 
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Likewise, the derivative is given by:  
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They begin with the initialised fractional-order operator defined as:  
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where ψ, the initialisation function, which accounts for the effects of the past is given 
by, 
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1.2.2 Laplace Transforms for Fractional Calculus 
In engineering and signal-processing approaches to the control and estimation of 
systems of ordinary differential equations, the use of Laplace transforms is popular. 
The Laplace transform of a system of first order linear differential equations can be 
written as a linear matrix equation in powers of the complex Laplace transform 
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variable s. Equations of this kind can then be solved using standard techniques of 
linear and polynomial algebra followed by an application of the inverse Laplace 
transform. Hartley and Lorenzo base their straightforward analysis of fractional-order 
systems on the analysis of transfer functions using Laplace transforms. Given a 
fundamental linear fractional-order differential equation:  
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c t c tx t d x t x q a c t ax t bu t qψ≡ + = − + >D  

Hartley and Lorenzo assume that c = 0, and that ψ = 0 temporarily, to give:  
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before applying the Laplace Transform, resulting in:  
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Thus, the resulting system transfer function can thus be expressed as follows:  

This transfer function, which the authors identify as the fundamental building block of 
more complicated fractional-order systems, is not contained in standard Laplace 
transform tables. However, they note that the following transform pair is commonly 
available:  

The system transfer function can be expanded term-by-term to derive a generalised 
impulse response function Hartley and Lorenzo call the F-function. Ignoring the b 
term in the numerator, the system transfer function is expanded about s = ∞, using 
long division:  

( ) ( )2

2 3
0

1 1 1 , 0
n

q q q q q nq
n

aa aF s q
s a s s s s s

∞

=

−
= = − + = >

+ ∑"

( ){ } ( ) ( ) ( )
1 2 1 2 3 1

1 , 0
2 3

q q qt at a tL F s q
q q q

− − −
− = − + − >

Γ Γ Γ
"  

Term-by-term transformation of this expression using the inverse operator from the 
original Laplace transform pair yields:  

Accordingly, by collecting the right-hand side into a summation, it can be seen that 
the resulting Generalised Impulse Response Function is given by:  
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Lorenzo and Hartley observe that Fq[-a,t] is a generalised exponential, as can be 
shown by setting the q parameter to unity:   
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Having established the requisite tools, the authors turn to the Scalar Initialization 
Problem. The Laplace transform is applied to the fundamental equation (with c set 
equal to 0) to yield:  

( ){ } ( ) ( ){ }0 , , ,0, ,q q
tL x t s x s L x q a t qψ= + ∀ ∈ℜD  

The second term appearing on the RHS of the above expression is now given by:  
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This expression can then be inverse transformed using the Laplace convolution 
theorem to yield:  
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Here, the first term represents any forced response due to u(t), while the second term 
represents the initialisation response of the system to the past history of x(t). 

Hartley and Lorenzo go on to consider general vector representations and their 
solutions, as well as fractional vector initialisation, feedback, and vector estimators, 
while the sinusoidal response of fractional-order operators and PID control are also 
examined. 

1.2.3 The Fractional Derivative and its Eigenfunction 
Solutions to fractional partial differential equations are arrived at by using the Laplace 
transforms of the Riemann-Louisville fractional integral and fractional derivative and 
their Caputo counterparts (see Podlubny, 1999:  105-6). However, an alternative and, 
in many ways more straightforward, approach is taken by Lorenzo and Hartley (1999; 
2000), who begin by asking the question:  What is the eigenfunction for fractional 
differointegration? The answer that they provide is the R-Function1:   
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Lorenzo and Hartley show that this function subsumes a variety of other generalised 
functions appearing in the literature on fractional calculus, including their own Fq[.] 
function, Erdelyi’s generalised Mittag-Leffler function (see Podlubny, 1999), and 

                                                 
1 An alternative approach is afforded by Rocco and West (1998), who demonstrate that the fractional 
derivative (integral) of increments to the complex Generalized Weierstrass Function, which is defined 
by: 
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where 1 < D < 2, γ >1, and φn is an arbitrary phase, is another fractal function with a greater (lesser) 
fractal dimension. 
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Miller-Ross’s (1993) function. Applying the Reimann-Louisville derivative to this 
function results in the following:  
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Lorenzo and Hartley (1999: 7) establish the eigenfunction property of the R-function 
under fractional differentiation (for the parameterization of v = 0):  
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For a = 1 and v = 0, the R-function returns itself. Under u order differintegration the 
R-function returns another R-function:  

[ ] ( )[ ]tcaRtcaRD uvqvq
u
tc ,,,, ,, += . 

Hartley and Lorenzo (1999) show that the R-function specialises to the exponential 
function, sine cosine, hyperbolic sine and hyperbolic cosine functions. These results 
engender a series of trignometric identities, which are further discussed in Lorenzo 
and Hartley (2000). 

The Laplace transform of the the R-function is given by (Lorenzo and Hartley:  2000: 
4):  
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2. Alternatives to the Standard Fractional Calculus 

2.1. The Wick-Ito Calculus and Finance Theory 
The non-Markovian and non-semi-martingale properties of FBM make it hard to 
construct the integration of FBM2. Moreover, pathwise integration, 
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2 Fokker-Planck partial differential equations are usually derived from the Chapman-Kolmogorov 
equation for a Markov process. However, it is also possible to derive the Fokker-Planck equation from 
an Itô stochastic differential equation (Frieman, 1975). However, McCauley (2007) observes that 
finitely many states of memory are allowed in Kolmogorov’s two partial differential equations 
(backward and forward). McCauley (2007) articulates the precise relationship holding between 
Kolmogorov’s two pde’s and the Chapman-Kolmogorov equation for Itô processes with finite memory. 
In McCauley et al (), it is further established that martingale stochastic processes generate uncorrelated 
but generally nonstationary increments. A detrended process with a drift dependent on the state 
variable is generally not a martingale. Although martingales might appear Markovian when analysed 
using simple averages and two-point correlations, long term memory can be detected and possibly 
exploited at three-point or higher correlations. 
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where Π is a partition of the interval [a, b] and ⏐Δ⏐ = max 0 ≤ k ≤ n – 1 (t k+1 – tk), fails to 
produce an arbitrage market due to misbehaviour of the Gaussian kernel near 0 (Daye, 
2003; citing Rogers, 1997). This is why the Norwegian and Chinese ‘white-noise 
mafias’ have felt obliged to develop a Wick-Ito calculus defined over Hilbert spaces3. 
This paper will go into much detail in regard to this difficult domain of quantitative 
finance, which demands a great deal in mathematical terms from its proponents. 

Suffice it to say that a separable Hilbert space, ( )ℜ2
φL  (i.e. one featuring countable yet 

dense subsets) is constructed characterised by an inner product operator φ. An 
isometry is established between this Hilbert space and the conventional L2(ℜ) space 
(Hu and Oksendal, 2000:  lemma 2.1). A new extended Schwartz space is constructed 
over which a probability measure can be guaranteed using the Bochner-Minlos 
theorem (Holden et al., 1996:  Theorem 2.1.1 and Appendix A). The integration of 
functions is defined using the resulting probability measure. The Kolmogorov-
Centsov theorem then guarantees the existence of a t-continuous version of the FBM 
so defined. Using Hermite polynomials, an orthonormal basis is established for the 
separable Hilbert space ( )ℜ2

φL . Using the fractional Wiener-Itô chaos expansion 
theorem, the Wick-Ito integral is then constructed over this ortho-normal basis (Hu et 
al, Theorem 2.6). The associated Wick algebra of product, convolution, power and 
exponential operations (the latter defined by analogy using convergence to the Wick 
analog of a conventional power series), supports a Wick calculus, which enables the 
development of Wick-Itô directional and stochastic gradients, and conditional 
expectations of functions and integrals. Fractional versions of the Ito rule and the 
Girsanov formula can be derived to constitute what is required for a complete 
fractional stochastic calculus, which can then be applied in financial modelling and 
asset pricing of FBM processes (Hu and Oksendal, 2000; Necula, 2002). Using the 
Wick algebra and calculus, no arbitrage and completeness can be defined for 
admissible and self- financing portfolios. A fractional version of the Black-Sholes 
formula can be derived through the application of the fractional version of Girsanov’s 
theorem, along with a fractional Black-Sholes Partial Differential Equation (Necula, 
2002: Theorem 4.3). The conventional and newly-derived fractional PDEs differ from 
one another in accordance with the following substitution:  

2
1

2
−

↔
H

tHσσ  . 

As for its Brownian Motion counterpart, through manipulation of the fractional Black-
Sholes PDE the usual ‘Greek alphabet’ of risk measures (Δ, Γ, Θ, V, and ρ) can be 
derived for options priced over the FBM process (Necula, 2002:  Theorem 5.4). 

The main drawback of the Wick-Ito calculus, despite its obvious power, is the 
complexity of the Hilbert space constructions upon which it is based. Undoubtedly, 
this will serve to limit the extent of its application compared to other, more user-
friendly, rivals. However, as Parvate & Gangal (2003:  2) argue, the development of a 
local fractal calculus based on Riemann integration has value due to the transparency 
and constructive nature of such an approach:  one that also possesses some 
algorithmic advantages.  

                                                 
3 A similar trajectory is followed in Decreusfond and Üstünel (1999), who also use the Malliavin 
calculus in a stochastic calculus of variations setting to obtain the requisite Itô formula, Itô-Clark 
representation formula and Girsanov theorem for the functionals of a FBM. 
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2.2 The Fα Calculus 
2.2.1 The Mass and Staircase Functions 
Operators for the local fractal Fα-calculus are constructed by first defining a mass 
function as a replacement for the length of the interval, which possesses the properties 
of interval-wise additivity, translation and power law (Parvate and Gangal, 2005:  
392).  

For a subdivision P[a,b] of the interval [a, b], a < b, the mass function γα(F, a, b) is 
given by:  

( )
{ }

( )
( ) [ ]( )1

1

0

1

:0
,,

1
inflim,,

],[
+

−

=

+

≤→ ∑ +Γ
−

= ii

n

i

ii

PP
xxF

xx
baF

ba

θ
α

γ
α

δδ

α , 

where θ(F, xi, xi+1) = 1 if F ∩ [xi, xi+1] is non-empty and zero otherwise, and 

( )iini
xxP −= +−≤≤ 110

max , 

the infinum being taken over all subdivisions P of [a, b] such that ⏐P⏐ ≤ δ. 

The authors observe (Parvate and Gangal, 2005:  392) that the motivation for this 
mass function comes from fractional calculus (specifically the 1/Γ(α + 1) term, which 
appears in both the Riemann-Louiville and Caputo definitions of the fractional 
derivative) and the construction of the Hausdorff measure. For the purposes of this 
paper it is instructive to observe that the α-power term performs the same role as the 
parameter measuring the degree of non-extensivity in non-extensive statistical 
mechanics. Juniper (2005) follows Tsallis (1995) in arguing that, this non-extensivity 
parameter also represents the degree of uncertainty aversion in a decision-making 
context. 

The integral staircase function—a generalisation of the Lebesgue-Cantor staircase 
function—can easily be obtained from this mass function. Let α0 be arbitrary but 
fixed real number. The integral staircase function ( )xSF

α , is then given by (Parvate 
and Gangal, 2005:  392):  

( ) ( )
( )⎩

⎨
⎧

−
≥

=
otherwise,,

if,,,

0

00

xF
xxF

xSF αγ
ααγ

α

α
α  

The integral staircase function has the following properties (Parvate and Gangal, 
2005:  393):  

1. ( )xSF
α  is increasing in x. 

2. If F ∩ (x, y) = ∅, then ( )xSF
α  is a constant in [x, y]. 

3. ( )ySF
α  - ( )xSF

α  = γα(F, x, y) 
4. α

FS  is continuous on (a, b). 
For the Fα -derivative and integral operators, the change in the staircase function over 
an interval replaces the length of the interval [x, y]:  

( ) ( ) ( )xSySxy FF
αα −→− . 

The staircase function is continuous and increasing in the interval. The Fα-derivative 
is defined over an α-perfect set, H, which represents the minimal closed set amongst 
the class of sets giving rise to the same staircase function. It is constructed by 
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introducing the notion of the point of change of a function f:  the pint x is a point of 
change of the function if f is not constant over any interval (c, d) containing x. The set 
of all such points is called the set of change and is denoted by Schf. Let F ⊂ ℜ be 
such that ( )xSF

α  is finite for all x ∈ ℜ for some α ∈ (0, 1]. Then the set H = Sch( α
FS ) 

is said to be α-perfect. It is the case that (Parvate and Gangal, 2005:  393):  

1. α
HS  = α

FS  
2. if x ∈ H and y < x < z then either ( ) ( )xSyS HH

αα <  or ( ) ( ).zSxS HH
αα <  

3. for any point x ∈ H, there is at most one more point y ∈ H such that 
( ) ( ).ySxS HH

αα =  

2.2.2 The Fα Fractional Integral 
The principles of Riemann integration are followed in constructing the integral, 
although the Riemann-Stieltjes sum is now defined over increments in the staircase 
function. For members of the class of functions f:  ℜ→ℜ, which are bounded on F, 
denoted as f  ∈ B(F), the particular function f is Fα -integrable if (Parvate and Gangal, 
2005:  396):  

( ) ( )∫∫ =
b

a
F

b

a
F xdxfxdxf αα , 

where the upper and lower bounds are defined as follows:  

( )
[ ]

[ ]PFfLxdxf
baP

b

a
F ,,sup

,

αα =∫  

and,  

( )
[ ]

[ ]PFfUxdxf
baP

b

a
F ,,inf

,

αα =∫  

with, 

[ ] [ ][ ] ( ) ( )( )∑
−

=
++ −=

1

0
11,,,,,

n

i
iFiFii xSxSxxFfmPFfL ααα  

and, 

[ ] [ ][ ] ( ) ( )( )iFiF

n

i
ii xSxSxxFfMPFfU ααα −= +

−

=
+∑ 1

1

0
1,,,,,  

and where, 

[ ] ( )
⎩
⎨
⎧ ≠∩

= ∩∈

otherwise    0
 if inf

,,
φIFxf

PFfm IFx , 

and, 

[ ] ( )
⎩
⎨
⎧ ≠∩

= ∩∈

otherwise   0
 if  sup

,,
φIFxf

PFfM IFx  

for a closed interval I. 
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The Fα-integral of f on [a, b] is denoted by:  

( ) xdxf
b

a
F∫ α  

and is given by the common value for the upper and lower bounds defined above. The 
properties of the Fα-integral operator include linearity and, if f is an Fα-integrable 
function on [a, b] with a < b and c∈ [a, b], then f is Fα-integrable on [a, c] and [c, b] 
with (Parvate and Gangal, 2005:  396):  

( ) ( ) ( )∫∫ ∫ +=
b

c
F

b

a

c

a
FF xdxfxdxfxdxf ααα . 

Moreover, if χF(x) is the characteristic function of F ⊂ ℜ, then, 

( ) ( ) ( )∫ −=
b

a
FFFF aSbSxdx αααχ . 

Let F ⊂ ℜ, f:  ℜ→ℜ,x ∈ F. A number l is said to be the limit of f through the points 
of F, or simply the F-limit as y → x if given any ε > 0, there exists a δ > 0, such that 
(Parvate and Gangal, 2005:  394):  

( ) εδ <−⇒<−∈ lyfxyFy  and . 

If such a number exists it is denoted by, 

( )yfFl
xy→

−= lim . 

Similar constructions apply in defining the notion of F-continuity. If F is an α-perfect 
set, then the Fα-derivative of f at x is given by (Parvate and Gangal, 2005:  396):  

( )( )
( ) ( )
( ) ( )

⎪⎩

⎪
⎨
⎧ ∈

−
−

−
= →

otherwise    0

 if  lim Fx
xSyS

xfyfFxfD
FF

xy
F

ααα , 

if the limit exists. The properties of the resulting Fα-derivative include that it is a 
linear operator, the derivative of a constant function is zero, and that the derivative of 
the integral staircase function is the characteristic function. Parvate and Gangal (2005:  
397) establish two theorems that are analogous to the fundamental theorems of 
calculus:  

The analog to the first fundamental theorem obtains if F ⊂ ℜ is an α-perfect set, and f 
∈ B(F) is an F-continuous function on F ∩ [a, b], and, 

( ) ( )∫=
x

a
F ydyfxg α  

for all x ∈ [a, b]. Then (Parvate and Gangal, 2005:  397):  

( ) ( ) ( )xxfxgD FF χα = . 

The analog to the second fundamental theorem applies in the case where f:  ℜ→ℜ is a 
continuous, Fα-differentiable function such that Sch(f) is contained in an α-perfect set 
F, and h:  ℜ→ℜ is an F-continuous function such that:  
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( ) ( ) ( )xfDxxh FF
αχ = . 

Then, 

( ) ( ) ( )∫ −=
b

a
F afbfxdxh α . 

Finally, Parvate and Gangal (2005:  397) introduce an Fα-version of the Taylor’s 
series expansion. Under conditions of Fα-differentiability, a function H has a Taylor 
series expansion:  

( ) ( ) ( )( ) ( ) ( )xhD
n

xSwS
wh n

F
n

n
FF α
αα

∑
∞

=

−
=

0 !
. 

Recognizing that ex is eigenfunction of derivative operator dy/dt = y, this raises the 
question of what the operator is for which the Fα-derivative is the eigenfunction. 
Parvate and Gangal (2005:  398) consider the equation:  

( )AxtxD FtF χα =, . 

Here, A is an n ×  n constant matrix. The solution to this equation for x ∈ℜ is given 
by:  

( ) ( )[ ] 0exp xAtStx F
α= . 

2.2.3 Conjugacy Relations between the Fα- and ordinary Riemann-calculus 
Let J = [0, 1] and let C = middle 1/3 Cantor set. Then one can associate with every 
point x ∈ J a point of C and vice versa through the map f:  J → C. Assume that x ∈ J 
is represented in binary notion, as say x =0.x1x2… while points y =0.y1y2…   of C are 
represented in base 3 by {0, 2}, with all middle third parts removed (i.e. the 1 digits).  
Let g:  {0, 1} → {0, 2} so that f(x) = f(0.x1x2…) = y = 0.y1y2… with yi  = g(xi) and f--

1(y) = x =0.x1x2…. Parvate and Gangal call f:  J → C the fractalizing map and f--1 :  C 
→ J the defractalizing map. The other operators are defined as follows:  for an Fα-
integrable function defined over [a, b], let, 

( ) ( ) ],[,1 baxxdxfxf
b

a F ∈′′= ∫ α  

through defractalization a function g = ψ[f] is obtained which is Riemann integrable 
over ( ) ( )[ ]., bSaS FF

αα  

Moreover, denoting:  

( ) ( )
( )

( ) ( )[ ]bSaSyydygyg FF

y

aSF

αα
α

,,1 ∈′′= ∫ , 

then Parvate and Gangal (2005:  theorem 15, Appendix A) establish that:  

( )( ) ( ) [ ]baxxfxSg F ,,11 ∈=α . 

This can be summarised by the relation, 

ψφα II F
1−= , 
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where Iα
F is the Fα-integration operator, I is the indefinite Riemann integration 

operator, and φ is just a restriction of ψ to a smaller class of functions (i.e. those 
differentiable on ( ) ( )[ ]., bSaS FF

αα  

A similar conjugacy relationship holds for Fα-derivatives (Parvate and Gangal, 2005:  
401). Under certain conditions, if a certain function h is Fα-differentiable at x, then the 
function g = φ[h] obtained by defractalization, is differentiable (in the ordinary sense) 
at y = ( ).xSF

α  Further, the following holds:  

( )
( )[ ]xhD

dy
dg

F
xSy F

α

α

=
=

. 

If the ordinary differential operator is represented as D, then it is the case that:  

φφα DDF
1−= . 

2.3 The Jackson Calculus 
 
2.3.1 Tsallis Entropy and the q-calculus 
Tsallis entropy is defined by:  

( ) ( ) ( )01
1

1,,
1

21 >⎥
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−

−
= ∑

=
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pppS
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iWq " . 

Under equiprobability:  

.lnln and 
1

1ln where,lnmax 1

1

xx
q

xxWkSS
q

qqqq =
−

−
≡==

−

 

The inverse function of lnqx , called the q-exponential (Tsallis et al, 1998, p. 537), is 
given by, 

( ) ( )[ ] ( ) .with 11exp 1
11 xxq

q
x
q eexqxe =−+≡≡ −  

Suyari (2004: 2) defines the q-product as follows, 

[ ]
⎪⎩

⎪
⎨
⎧

>−+>>−+=⊗
−−−−−

otherwise  ,0
01,0,0 if,1:

111
1

11 qqqqq

q
yxyxyxyx  

The q-product is derived by requiring that is satisfy the following equations:  

( )
( ) ( ) ( )yxyx

yxyx

qqqq

qqqq

+=⊗

+=⊗

expexpexp
lnlnln

 

The continuous time version of Tsallis entropy is given by, 

( )[ ]
( ) ( )∫∫ ℜ∈−=ℜ∈

−

−
≡ d

q

q xxpxdxpSq
q

xpdx
S ,ln;,

1

1
1  

For q = 1, Tsallis entropy reverts to the familiar Boltzmann-Gibbs entropy. Under 
appropriate moment constraints over the first and second moments of the distribution, 
Boltzmann-Shannon entropy can be used to derive the familiar Gaussian process. 
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However, under slightly modified moments constraints (which take into account the 
divergence of the second moment), De Souza and Tsallis (1997) also show that Tsallis 
entropy can be used to derive the Students-t distribution.  

When Tsallis entropy is maximised subject to the following moment constraints over 
the q-generalised mean and q-generalised variance,  

( )
( )

( ) ( ) ( )
( )

2 22;
q q

q q q qq qq
q

p x p x
x x dx x x dx

p x dx p x dx
μ μ σ μ

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= = − = = −
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∫ ∫
∫ ∫

 

the resulting distribution is the q-Gaussian PDF as given by4, 

( ) ( )
( )

2

2

exp
, 0.

exp
q q

q
q q

x
f x

x dx

β
β

β

−
= >

−∫
 

The q-exponential expq(±λt) emerges as the solution of a variety of differential 
equations in non-extensive statistical mechanics including:  

( )[ ] ( ){ } ( ) ( )tfqtftq
dt
d λλ −±=−± 211 . 

2.3.2 The Tsallis Distribution and Jackson Derivative 
Borges (2004) has derived a generalised version of the Jackson Derivative based on 
principles of reasoning by analogy. Borges points out that ex is eigenfunction of 
derivative operator dy/dt = y. He then asks, ‘What is the operator for which q-
exponential is the eigenfunction?’ He demonstrates that the answer lies in the 
following operator 5:  

( ) ( ) ( ) ( ) ( ) ( )
1lim 1 1q y x

q

f x f y df x
D f x q x

x y dx−→

−
≡ = − −⎡ ⎤⎣ ⎦⊕

 

The counter-part to this generalisation of the Jackson derivative is the following 
integral operator:  

( ) ( )
( ) ( )

1, lim
1 1 1 1q q y x

q

f x
f x d x dx d x dx

q x q x→
= =

+ − + −∫ ∫  

Lenzi et al (1999) generalise the Laplace transform using the q-exponential and q-
logarithmic functions. The usual exponential kernel exp(-st) is replaced by the q-

                                                 
4Suyari and Tsukuda (2005) shows that the Tsallis distribution can also be derived by taking the 
maximal value of the q-product of the likelihood function, Lq (θ), shown below, 
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5 The ⊕-1 function stands for the inverse operation to the q-sum, as shown below, 
( )

( ) ( )1/1,
11

1

1 −≠
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−++≡⊕

− qy
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yxyx

xyqyxyx

q

q  

Borges (2004) shows how these q-generalized operators follow necessarily from asking what kind of 
‘sum’ operator would be required to make the exponential terms in the product of two q-exponentials 
‘add’ together.  
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Gaussian kernel [expq(-t)]s. Properties of the resulting q-Laplace transform are 
discussed (which include linearity and scaling along with a variety of q-Laplace 
transform pairs, while applications in the field of non-extensive statistical mechanics 
are considered.  

2.3.3 Diffusion Equations 
Tsallis (2005) shows how the Fokker-Planck equation for normal diffusion (satisfying 
<x>2 ∝ t), which governs the heat equation (also known to be the diffusion equation 
characterising Einsteinian Brownian motion), 

( ) ( ) ( );0,,
2

2

>
∂

∂
=

∂
∂ D

x
txpD

t
txp  

can be generalised in two different ways. The first form is linear but has non-integer 
or fractional derivatives, 

( ) ( ) ( ).20;0,,
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txpD
t

txp  

The second form preserves integer derivatives but is non-linear, 
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txpD

t
txp  

While the first of these forms (under the initial condition p(x, t) = δ(x) ) gives rise to 
Lévy distributions, the second (under the same initial condition) yields the Tsallis 
distribution6. Tsallis posits a yet more general version of the Fokker-Planck equation, 

( ) ( )[ ] ( ).,,,, 2
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txpD
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txp q

γδγ
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At this level of generality, the diffusion equation does not possess analytical solutions. 
However, by constructing a q-generalised version of the Fourier transform using q-
products and the q-exponential, Umarov, Tsallis, Gell-Mann and Steinberg (2006a,b) 
accomplish a q-generalization of the central limit theorem (which pertains to q-
Gaussian distributions) and its Lévy-Gnedenko counterpart (which pertains to q-
generalised Lévy distributions). The latter limit theorem would seem to characterise 
stochastic processes conforming to Tsallis’ most generalised version of the diffusion 
process. Nevertheless, at this stage, it would appear that there are no sufficiently 
generalised versions of stochastic calculus that would point to a solution for the most 
general version of the Fokker-Planck equations listed above, although the Wick-Ito 
calculus would seem to point in the direction of a likely solution. 

The first form of the duffusion process is amenable to analysis using conventional 
fractional calculus, The Fα-calculus, or the Wick-Ito approach. The second form can 
obviously be analysed using the generalised Jackson calculus.  

3. Conclusion 
This paper has reviewed four varieties of fractional calculus. From a practitioner 
perspective, Harltey and Lorenzo’s approach to the fractional calculus is 
                                                 
6 For an extensive discussion of the relationship between this diffusion equation, Hurst exponents, 
power-law scaling, and Markov processes see Bassler et al., (2006). 
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straightforward and can readily be incorporated into existing Laplace transform-based 
methods of estimation and control. The Wick-Ito calculus offers the greatest 
generality but demands a great deal of the practitioner in mathematical terms. The 
Jackson calculus is also congruent with the existing Laplace transform-machinery. 
However, it is specialised to particular varieties of anomalous diffusion.  

The attractions of the Fα-construction are that it also affords the prospect of bridging 
the more familiar fractional (non-integer) though linear non-local calculus and the 
integer though non-linear Jackson calculus. This is because power-law processes 
would seem to be accommodated by the non-linearity, which first appears in the 
denominator of the mass function. As mentioned in the introduction, this power term 
is related to the principle of non-extensivity in the literature on both statistical 
mechanics and generalised information measures, and also represents the degree of 
uncertainty aversion in a decision theoretic context (Juniper, 2005, 2006).  

The conjugacy relationship established between ordinary differential equations and 
fractional differential equations supports both an intuitive appreciation of the calculus 
and an algorithmic approach to analysis. This conjugacy and the resulting ability to 
solve Fα -differential equations by fractalizing, solving using ODEs, then 
defractalizing, may also provide an alternative justification for neural networks and 
support vector machines to that afforded by regularization theory or the representing 
kernel Hilbert space theorems in machine learning.  

The Fα -calculus may also prove to be congruent with the q-generalised algebra and 
trigonometry underpinning the Gell Mann, Tsallis, Umarov and Steinberg limit 
theorems for q-generalised Gaussian and Lévy processes. In particular, a more general 
version of the Laplace transform may be constructed by combining the q-exponential 
form with Hartley and Lorenzo’s R-Function version of the Laplace transform. 
Alternatively, the conjugacy relations underpinning the Fα -calculus could 
conceivably be combined in some way with the generalised Jackson calculus. In 
addition, more work needs to be done to relate Martingale theory and Ito’s Lemma to 
this new calculus (and its generalised Jackson calculus counterpart), so that it might 
eventually displace the far more complex Hilbert space-based machinery of the Wick-
Ito Calculus. 
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