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1. Introduction 

Typically social and economic data have some spatial dimension. Unemployment is 

recorded by local unemployment agencies and tracked by government, accumulations 

of hazardous waste occur in proximity to specific human populations, crimes are 

committed at a location, consumers purchase goods at stores located in certain places 

and social inequality is spatially-situated. While human geography and urban 

planning have a long tradition of observing the spatial patterns of various phenomena 

and using these to develop and test explanatory models of social interaction and 

urbanisation (Frank, 2003: 147), conventional procedures of social data analysis, 

particularly in economics, often do not make use of this important locational 

information. The urban sociologists (and later the criminologists) at the Chicago 

school (Park et al., 1925; Park, 1936 and Hawley, 1950), from which theories of 

human ecology evolved, stressed that social facts are located facts, situated in time 

and place and that social life cannot be fully understood “without understanding the 

arrangement of actors at particular social times and places” (Abbott, 1997: 1152). In 

sociology and economics there has been a renewed interest in models of social 

interaction and dependence among economic agents (Wilson, 1987; Durlauf, 2003; 

Akerlof, 1997), spatial spillovers (Topa, 2001), knowledge externalities and 

agglomeration economies (Banerjee, 1992; Krugman, 1991). In such models, 

information about the location of economic agents is essential to correctly predict the 

nature and magnitude of outcomes generated (a summary of these developments can 

be found in Goodchild et al., 2000: 141). 

Statistically, it is traditional for regionally based cross-sectional data to be viewed as 

conceptually identical to cross-sectional data on individuals or businesses at a single 

location. However, spatially adjacent observations are likely to exhibit spatial 

interdependence, owing to dynamics (knowledge flows, trade flows, commuting and 

social spill-overs), which accompany proximity. This emerging consensus begins with 

Tobler’s (1970) maxim that ‘everything is related to everything else but near things 

are more related than distant things’.  

Spatial autocorrelation refers to the formal measure of the extent near and distant 

things are related. There are three types of spatial autocorrelation: 

1. Positive spatial autocorrelation occurs when features that are similar in location 

are also similar in attributes; 

2. Negative spatial autocorrelation occurs when features that are close together in 

space are dissimilar in attributes; and 

3. Zero autocorrelation occurs when attributes are independent of location (that is, 

the observations are equivalent to a standard cross-sectional dataset). 

Ignoring dependence between neighbouring regions will lead to biased regression 

results (Anselin, 1988). The problem is that in many cases direct analysis of the 

interactions between regions is not possible, due to the scarcity of data, and this 

“requires us to apply a method that allows us to analyse the effects of spatial 

interaction without quantitative information on the different linkages between labour 

markets” Niebuhr (2002: 5). In the last twenty years, a range of spatial regression 

techniques have been developed to measure latent forces of interaction and handle 

data that violate standard statistical assumptions of independence (Cliff and Ord, 

1981; Anselin, 1988). These are estimated using maximum likelihood techniques and 

include: the general, mixed (SAR), spatial Durbin and first-order (FAR) auto-

regressive models. 



 

This Chapter is based on a series of lectures given during the annual ARCRNSISS 

Summer School between 2006 and 2008, which introduced spatial econometric 

techniques to students who were assumed to have no background in regression 

analysis. The material used in the lectures and reproduced here owes a great debt to 

the work of Luc Anselin. Much of it is drawn from his 1988 book and related 

materials. The demonstration dataset is Anselin’s famous data covering 49 

neighbourhoods in Columbus, Ohio data. We use a combination of the open source 

software GeoDa, produced by Anselin’s team at the University of Arizona and the 

spdep package in R (Bivand, 2006) to generate the maps and the statistical results. 

The lectures also were significantly aided by the work of James Le Sage, who 

produced an open source 1999 technical manual with supporting MatLab scripts that 

allowed many younger scholars to enter the field of spatial econometrics. 

The aim of the Chapter is to acquaint students with the concept of spatial 

autocorrelation in regionally based data (such as Census data); to introduce spatial 

econometric techniques and their theoretical underpinnings, special cases and 

regression diagnostics. We will consider the issues surrounding the creation of a 

weight matrix - which captures the degree of inter-relationship between regions in the 

system. 

2. Hypothesis development 

In applied analysis, we typically will be motivated by some problem to be solved for 

which we form a conjecture or hypothesis. The steps in the analysis are as follows: 

 Construct a problem and consider the extant literature to demarcate where 

hypothesis development might lead to new knowledge in the field of interest. 

 Make the enquiry operational by forming some conjectures. 

 Gather relevant data, which might become an iterative process with the hypothesis 

development given that we frequently encounter the situation that what we might 

be interested in examining cannot be studied in a statistical manner because there 

is no available data of a sufficient standard. 

 Determine the statistical and econometric techniques that are most appropriate 

given the nature of the problem and the data available. 

 Conduct exploratory data analysis to determine the basic characteristics of the 

data. In the spatial context, this involved examining for spatial correlation. 

 Conduct the spatial modelling, which involves several steps: 

- Choosing the specification (the form of the regression to be estimated); 

- Choosing the appropriate estimation techniques; 

- Confronting the regression estimates with a battery of tests to ensure they 

have desirable properties, which permit inference (hypothesis testing); and 

- Interpreting the estimates, if statistically acceptable. 

 Reconsider hypotheses in the light of the results. This may involve a modification 

to reflect the information that has been generated by the modelling. 

To aid our understanding of hypothesis development, we now consider the 

demonstration dataset. 

3. The Columbus Dataset 

The Columbus, Ohio dataset covers 49 contiguous Planning Neighbourhoods in 1980 

(Anselin, 1988). Anselin (1988: 187) says, “these neighbourhoods correspond to 

census tracts or aggregates of a small number of census tracts, and are representative 

of the type of data used in many empirical urban analyses.” 



 

Three variables of interest in the dataset include: 

 Crime - residential burglaries and vehicle thefts per thousand households in the 

neighbourhood (CRIME) 

 Household income in units of $1,000 (INC) 

 House values in units of $1,000 (HOVAL) 

All 49 observations are also geographically located by their latitude coordinate (LAT) 

and the corresponding longitude coordinate (LONG). We use the newer version of 

this dataset where the order of the neighbourhoods was changed. 

It is always advisable to visualise the data prior to more formal analysis. Any outliers 

that you see in the graphs should make sense (for example, they might be due to a 

known change in behaviour, or a policy change). Graphs also allow you to quickly 

appreciate some of the key characteristics of the data. 

Figure1 plots the crime rate and household income for the 49 neighbourhoods, which 

are arranged in the order they appear in the database on the horizontal axis. A quick 

visual examination would suggest that where income levels are high, the crime rate is 

low and vice versa. 

Figure 1 Residential burglaries and vehicle thefts per thousand households and 

Income Per Capita ($000s), Columbus, Ohio, 1980 

 

 

Source: Anselin (1988). 
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Figure 2 shows the housing values for each neighbourhood. When juxtaposed with the 

information in Figure 1, it appears that in neighbourhoods where the housing values 

are high, there is a lower crime rate and higher household incomes. This makes 

intuitive sense, in that higher income individuals will tend to reside in higher quality 

housing and more expensive neighbourhoods, have less need to steal, and will devote 

more resources to home security and theft protection. 

Figure 2 Housing values, Columbus, Ohio, 1980, $000s 

 
Source: Anselin (1988). 

Figure 3 crime against income (Panel A) and housing values (Panel B). The lines are 

simple linear regression with the dependent variable being crime and a constant term 

included. The graphs support the view that the relationship between crime and income 

is likely to be strong and negative. The relationship between housing values and crime 

is also negative but less clustered around the regression line than we see in Panel A. 

On this basis, we might thus form the following hypothesis: 

Thefts in any neighbourhood will be a negative function of income and 

housing value. 

This means that if the hypothesis has explanatory power we would expect the crime 

rate to be higher in neighbourhoods with lower levels of household income and higher 

housing values. 

Clearly there would be a deep literature in criminology that would provide motivation 

for this type of enquiry. These hypotheses are just illustrative and designed to advance 

the discussion. The important point is that theory always underpins conjecture and 

empirical analysis. The other cautionary note is that we should not see econometric 

analysis (for example, regression) as an exercise in truth discovery. Regression results 

do not prove anything. In some cases, we might be able to say that the estimates we 

generate provide tentative support for our theoretical conjectures. The regression 

results can also expose conjectures that are clearly not supported by the data. 

However, in spatial data, traditional plots might obscure some of the spatial 

dependencies and further insights can be gained through visualisation via maps. A 

popular way of examining spatial patterns is to use ranking or percentile maps, which 

highlight extreme values, which are defined as observations in the top and bottom one 

per cent of the distribution. We might consider these extreme values to be outliers 

although there is no statistical significance attached to the ordering presented. 

0 

20 

40 

60 

80 

100 

120 

1 6 11 16 21 26 31 36 41 46 

$
0

0
0

s 

Housing values ($000s) 



 

Figure 3 Cross plots income and crime, housing values and crime, Columbus, Ohio, 

1980 

 

Panel A 

 

Panel B 

Source: Anselin (1988). 

Figure 4 shows the percentile map for crime with the observations ranked into six 

categories, 0-1 per cent; 1-10 per cent; 10-50 per cent; 50-90 per cent; 90-99 per cent, 

and 99-100 per cent. The numbers in brackets represent frequency of observations in 

each band. The high to very high crime rate neighbourhoods are clustered within the 

inner-city area with the low crime rate regions clustered together around the periphery 

of the city. Two neighbourhoods are in the top and bottom percentiles of the 

distribution. 

Figure 5 shows the percentile map for household income in Columbus, Ohio in 1980. 

The lower income households are clustered together, with some exceptions in the 

inner-city neighbourhoods, while the higher income households are spatially 

distributed on the periphery of the city. 
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Figure 4 Percentile Map, Crime, Columbus, Ohio, 1980 

 

 

Figure 5 Percentile map for income, Columbus, Ohio, 1980 

 

 



 

Finally, Figure 6 shows the percentile map for housing values in Columbus, Ohio in 

1980. Consistent with the spatial information shown for household income, the higher 

valued houses are located in clustered patterns on the periphery of Columbus and the 

lowest value houses are concentrated increasingly towards the inner city. 

Figure 6 Percentile map for housing values, Columbus, Ohio, 1980 

 

Taken together, the percentile maps indicate spatial clustering in the three variables of 

interest, which may present econometric problems if we ignore the likelihood of 

spatial autocorrelation. While the percentile maps do not relate any information about 

the statistical significance of the clustering, the visual patterns alert us to the 

possibility that these observations should not be treated as being independent, as 

would be the case in a standard cross-sectional analysis. 

4.  Ordinary Least Squares regression 

Ordinary least squares (OLS) regression is the most widely used modelling method in 

econometrics and is the first estimation technique that is taught. When people say 

they have ‘run a regression’ or fitted a ‘linear regression’ or ‘used least squares’ they 

usually are saying they have used OLS to fit a model to their data. Fitting an equation 

means that we have used data to quantify an algebraic relationship between variables, 

with unknown coefficients. 

We construct regression models in terms of a dependent variable (CRIME) being 

“explained” by the explanatory or independent variables (in this case household 

income and housing values). 

We usually express our hypothesis in the form of an algebraic model as follows: 

(1) CRIMEi = a + b1INCi + b2HOVALi + ei   



 

In this dataset, they are measured for the i
th

 region hence the subscript.  The 

regression has a constant term, which need not concern us here. Each explanatory 

variable is multiplied by an unknown parameter or coefficient (1 and 2). Together 

with the constant, the two independent variables comprise the deterministic part of the 

equation. The task of regression is to quantify these unknown parameters, which 

define the way in which household income (INC) and housing values (HOVAL) 

impact on crime. 

You will notice an additional parameter which is called the error term or the 

stochastic component of the regression. While our hypothesis suggests household and 

income explain the crime rate in each of the i regions, we also accept the dependent 

variable (CRIME) will have random components. The error term captures the 

variation in CRIME not explained by INC and HOVAL. There is an error term for 

each of the 49 observations. 

OLS regression makes certain assumptions about the properties of the error term. 

 Individual observations are not correlated with each other; 

 The errors have a finite variance – so you don’t get increasing errors as the value 

of the explanatory variable rises, for example; 

 The errors have a zero mean – so for any ‘region’ the error is expected to be zero 

and the expected value of the dependent variable is given by the deterministic part 

of the equation. 

After estimating the equation (finding values for the unknown coefficients and the 

errors), we would then use the results to progress our analysis in a number of ways. 

First, we would seek to test the statistical significance of the coefficients, which 

means we want to be sure that the estimates are not, in fact, indistinguishable from 

zero. If they were statistically equivalent to zero, then we would conclude there was 

no relationship between that particular explanatory variable and the dependent 

variable. Second, we might use the estimated equation to make forecasts (predictions) 

about the crime rates. As long as the estimates were statistically sound, we might 

advise the government that if they increased household incomes through job creation 

programs or social transfers for those households with low income, the crime rate in 

those neighbourhoods might drop by x per cent.  The scale of the policy intervention 

(the increased income) could then be scaled to match the targeted drop in the crime 

rate in specific neighbourhoods. 

How does OLS provide numerical estimates of the unknown coefficients? There are 

many ways in which we could produce these numerical estimates. The name OLS 

refers to a specific way the estimates of the unknown parameters are computed. The 

practice of regression or ‘fitting a line’ is the process by which the unknown 

parameters are picked so that the line ‘best’ represents the data. What criterion is used 

to determine ‘best’? In OLS, the unknown parameters are estimated by minimising 

the sum of the squared residuals between the data and the model. 

The theoretical model (Equation 1) becomes an estimated model, when the unknown 

coefficients and error terms are quantified. The estimated error terms in the theoretical 

model (Equation 1) are called residuals. The estimated model corresponding to 

Equation (1) is written as such: 

(2)  Ci = a + b1INCi + b2HOVALi + ei  



 

where  Ci  is the estimated value of CRIME in the i
th

 neighbourhood. The hats (^) 

indicate the parameter is estimated or fitted.  

We can thus express the residuals of the estimated model in this way: 

(3) 
ei =CRIMEi -Ci

=CRIMEi - a + b1INCi + b2HOVALié
ë

ù
û

 

If you examine the right-hand side of this expression, you will see that the residual for 

the i
th

 neighbourhood is the difference between the actual value (CRIMEi) in that 

neighbourhood and the estimated or fitted value, which is the term in the brackets. 

We define the residual sum of squares (RSS) as: 

(4) RSS = ê
i

2

i=1

N

å = CRIME
i
- â + b̂

1
INC

i
+ b̂

2
HOVAL

i( )é
ë

ù
û

i=1

N

å
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So the residuals for each observation are squared and then summed overall for N 

observations. N is the case of the Columbus data set is equal to 49.  

The OLS regression technique selects the values of the unknown parameters such that 

the RSS is minimised. The estimated parameters define a regression line, which 

relates the explanatory variable to the dependent variable. In a bi-variate model (only 

one explanatory variable and a constant), the regression line would be equivalent to 

the trend line that Excel draws on a scatter plot. In the case of a simple bi-variate 

model, relating crime to household income as captured in Figure 7, the best line is the 

red OLS regression line. The other lines would not minimise the RSS for this data. 

Figure 7 OLS versus other possible fitted lines. 

 



 

To cement these ideas more strongly, Figure 8 presents a stylised set of observations 

for crime and household income (not taken from the Columbus dataset). The 

observations are shown as red dots. The red line shows the OLS fitted line. The 

residuals are the blue vertical drop-lines from the actual value (the red observations) 

to the fitted line. The squared sum of the blue drop-line values is the RSS and OLS 

minimises that number. 

Figure 8 The OLS regression line 

 

What are the properties of the OLS estimator? OLS is known as the Best Linear 

Unbiased Estimator (BLUE), which means that our inference (hypothesis testing and 

prediction) will be based on sound statistical principles. OLS estimates of the 

unknown coefficients are unbiased and best (efficient). 

 Unbiased - an estimate is unbiased if, in repeated trials, it misses in one direction 

with the same propensity as it misses in the opposite direction. Unbiased estimates 

have errors, but the errors are distributed around the true value of the dependent 

variable. 

 Best or efficient estimates - the typical error of an estimate is called the standard 

error. The estimator with the smallest standard error of all possible estimators is 

called the ‘best’ estimator or the ‘efficient’ estimator. The ‘best’ estimator will 

produce estimates that are more tightly grouped around the true value of the 

variable that it is estimating than will any other estimator. Estimators with small 

standard errors are desirable not the least because they allow for more precise 

hypothesis tests. 

However, these properties only hold if the OLS assumptions relating to the error 

terms hold. For example, when these assumptions fail, then OLS can produce biased 

estimates. There are many other issues that arise when conducting regression analysis 

(choosing functional forms; measurement errors, omitted variables; outliers; etc). For 

the purposes of this Chapter, we are concerned only with the properties of the 

residuals relating to their independence. 



 

5. Traditional Econometrics and Spatial Econometrics 

Empirical work in regional science uses sample data that is clearly location-specific. 

Traditionally, regional cross sectional data are viewed as being conceptually identical 

to cross-sectional data on individuals or businesses at a single location. However, as 

outlined in the Introduction, spatially adjacent observations are likely to exhibit 

spatial interdependence, owing to dynamics (such as knowledge flows, trade flows, 

commuting and social spill-overs), which accompany proximity. Two problems arise 

in this situation: 

 Spatial dependence between the observations; 

 Spatial heterogeneity occurs in relationships we are modelling. 

These two problems define the ambit of spatial econometrics. In this Chapter we are 

concerned with the first of these problems, as an introduction to the field of spatial 

modelling.  

OLS regression is unsuitable when there is spatial dependence between the 

observations (Anselin, 1988). The consequences of ignoring this dependence vary 

with the type of spatial dependence that is present. We will see that if we ignore what 

is referred to as the spatial lag, we encounter an omitted variable problem (that is, the 

regression equation excludes an important explanatory variable) and OLS produces 

biased and inconsistent estimates. If on the other hand we ignore the spatial error, 

we encounter an efficiency problem. In this case, the OLS estimates are unbiased but 

inefficient, which means that the OLS standard errors and related t-test statistics are 

biased. The presence of either problem violates the OLS assumption that the sample 

observations are strictly independent drawings and renders the estimates generated 

unusable. 

Spatial econometrics techniques have been developed to specifically cope with 

situations where the data observations are spatially related. Spatial econometrics 

provides ways to modify the standard OLS regression approach to overcome the 

problem of spatial dependence. 

6. Spatial autocorrelation: what is it and how is it measured? 

6.1 The concept of spatial autocorrelation 

Spatial autocorrelation refers to the formal measure of the extent near and distant 

things are related. Figure 9, using raster representation, depicts the three types of 

spatial autocorrelation: 

1. Positive spatial autocorrelation occurs when features that are similar in location 

are also similar in attributes; 

2. Negative spatial autocorrelation occurs when features that are close together in 

space are dissimilar in attributes; and 

3. Zero autocorrelation occurs when attributes are independent of location. 

  



 

Figure 9 Stylised patterns of spatial correlation 

   

(a) Positive spatial correlation (b) Negative spatial correlation (c) Zero spatial   correlation 

Source: Longley et al (2001). 

There are two broad reasons proposed as to why spatial dependence may exist 

between regions. First, data collected on observations associated with spatial units 

such as used in the ABS Australian Standard Geographic Classification may contain 

measurement error because the administrative boundaries for data collection do not 

reflect the underlying processes generating the sample data (Anselin, 1988: 11-12). If 

social or economic behaviour crosses geographic boundaries we would expect to see 

very similar results amongst neighbouring regions. For example, mobile workers can 

cross boundaries to find employment in neighbouring areas, and thus labour force or 

unemployment measures based on where people live could exhibit spatial 

dependence. 

Second, location and distance are important forces at work in human geography and 

market activity. For example, labour market outcomes (such as unemployment rates) 

between neighbouring regions might be clustered because of spatial pattern of 

employment growth (demand) or the distribution of population characteristics such as 

job skills (supply), and some mismatch between them. Further, housing has clear 

spatial dimensions, which may contribute to the clustering of unemployment rates as 

disadvantaged workers seek cheaper housing (O’Connor and Healy, 2002; Hulse et 

al., 2003). Mobility patterns are important in determining the extent of spatial 

dependence between regions. European empirical evidence points to the strong effects 

of distance as an obstacle to migration. Migration is significantly reduced as distance 

increases because the costs of moving rise and the benefits from migration become 

increasingly unknown (Helliwell, 1998; Tassinopolous and Werner, 1999). Spatial 

impacts can also occur independently of employment patterns, population 

characteristics and housing patterns due to the functioning of social networks and 

neighbourhood effects (Borland, 1995; Topa, 2001).  

6.2 Representing spatial dependency with spatial weight matrices 

To consider the impacts of spatial dependence we need to be able to quantify 

“location” in our data. There are a variety of ways in which we can capture the spatial 

patterning between observations in our dataset. Stetzer (1982: 571) discusses various 

criteria that might be used, including “connectivity, contiguity, length of common 

boundary between political units, and various distance decay functions” (see also 

Hordijk, 1979; Anselin, 1988). For our purposes, we can view the spatial data in 

terms of contiguity, which requires knowledge of the shape and size of the regional 

unit being observed. Contiguity considers neighbourhood proximity in terms of a 

shared common border. What do we mean by a shared common border? 



 

There are three types of contiguity patterns, which take their name from the game of 

Chess (see Figure 10): 

 Rook contiguity where regions share common sides. In this case, Regions 1 and 2 

would be classified as being rook contiguous  

 Queen contiguity where regions share either a common side or a common vertex. 

In this case, Regions 4 and 5 meet these criteria and are thus queen contiguous. 

 Bishop contiguity where regions share a common vertex. Regions 2 and 3 are 

bishop contiguous. 

In our case we will only be concerned with first-order contiguity, which means the 

regions must have common borders. More complex patterns of n-contiguity are 

sometimes used in spatial analysis. 

Figure 10 Contiguity patterns for shared borders 

 
If we take first-order rook contiguity as an example, how might we formalise that 

spatial relationship in a regression context? In other words, we need a method of 

quantifying the proximity. First-order contiguity uses binary connectivity such that 

we define an element wij = 1 if regions i and j are contiguous and zero otherwise. In 

this schema, our concept of connectedness is either “on” or “off”. The alternative is to 

use distance functions that taper as the distance between regio ns increases. 

As an example, consider the 3 regions in Figure 11. This square matrix has 3 rows 

and 3 columns, 9 cells in all. The three main diagonal cells represent each region’s 

relationship with itself while the off-diagonal cells represent the pair-wise 

relationships. Under rook contiguity, the cells representing regions that are rook-

connected are denoted 1 while those that are no connected with such a common 

border are given the value of 0. We thus expect, for example, regions 1 and 2 to 

exhibit mutually dependent behaviour but regions 1 and 3 are considered independent 

of each other. As we will see, this spatial patterning allows us to weight some 

observations in the regression exercise more than others to reflect the hypothesised 

spatial dependence. It is for this reason that we refer to such a matrix as a spatial 

weights matrix. This simple quantification of the expected spatial dependence 

generalises to any number of regions and spatial arrangements. T 

  



 

Figure 11 Stylised Rook Contiguity and Spatial Weights 

 

Figure 12 presents a more complex map with 5 regions in various states of contiguity. 

It allows us to generalise the concept of a spatial weights matrix. If we continue with 

rook contiguity as our representation of connectedness, how might we formalise the 

spatial relationship shown in Figure 12? 

Figure 12 Contiguity Patterns in Spatial Data 

 



 

In general terms, we define a matrix W(n, n) where n is the number of regions. There 

are five regions in Figure 12, so n = 5. Each element in W denotes a specific pair-wise 

relationship between the five regions, that is, whether they are rook contiguous or not. 

We give an element in W the value of 1 if the two regions that the element represents 

are rook contiguous and zero otherwise. The elements on the main diagonal denote a 

regions relationship with itself so we give it the value 0. The off-main diagonal 

elements capture the pattern of spatial dependency assumed. 

The element W(2,1) denotes the relationship between Region 2 and Region 1. Are 

they rook contiguous? If yes, we would declare that element to be 1 if no, the element 

would be assigned the value of zero.  In the case of Figure 10, we can see that 

Regions 1 and 2 are indeed rook contiguous so we assign W(2,1) = 1. You will note 

that element W(1,2) is identical to W(2,1), which makes sense because the W matrix 

is symmetrical. The rook contiguous regions are: 

 Regions 1 and 2 

 Regions 3 and 4 

 Regions 3 and 5 

 Regions 4 and 5 

The resulting spatial weight or pattern matrix, W is thus given as: 

W =

0 1 0 0 0

1 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

é

ë

ê
ê
ê
ê
ê
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The spatial weight matrix captures in a quantitative manner the spatial patterning 

based on contiguity, which we posit leads to spatial dependence. Stetzer (1982: 571) 

notes that spatial weight matrices represent “a priori knowledge of the strength of the 

relationship between all pairs of places in the spatial system.” The weights are 

analogous to lag coefficients in autoregressive-distributed lag time series models. 

Unlike in time-series data where data points are ordered contemporaneously 

determining the order of observations in space is difficult as it is multidirectional. A 

‘spatial order’ is typically imposed in a more or less ad hoc fashion. Thus, estimation 

of spatial autocorrelation is sensitive to the weights employed and the weights 

embody assumptions about the spatial structure (Molho, 1995: 649). A discussion of 

this issue is beyond the scope of this Chapter. 

In practice, the spatial weight matrix is row standardised. Row standardisation creates 

proportional weights in situations where a region has an unequal number of 

neighbours. In other words, the row-standardised weights increase the influence of 

likely spill-overs where a region has few neighbours relative to regions where spill-

overs will occur between many neighbours. 

6.3 Spatial contiguity in the Columbus, Ohio dataset 

Figure 13 numbers the 49 neighbourhoods in the Columbus, Ohio dataset to help us 

establish the spatial dependence assumed based on first-order rook contiguity. Table 1 

summarises all the first-order rook contiguous cases for the 49 Columbus 

neighbourhoods. 

 



 

Figure 13 Columbus, Ohio neighbourhoods 

 

Source: Anselin (1988) Columbus, Ohio dataset (new reordered version). 



 

 

Table 1 First-order rook contiguity pattern for Columbus Neighbourhoods 

Neighbourhood First-Order Contiguous to 

      1 2 3 

        2 1 3 4 

       3 2 4 5    

    4 2 3 5 8    

   5 3 8 5 8 9 11 15 

   6 5 9   

      7 8 13       

  8 4 5 7 11 12 

     9 5 6 10 15 22 26 

    10 9 17 20 

       11 5 8 12 16 

      12 8 11 13 14 16 

     13 7 12 14  

      14 12 13 18 19 

      15 5 9 16 25       

16 11 12 15 18 24 25     

17 10 20 23        

18 14 16 19 24       

19 14 18 24        

20 10 17 22 23 27 32 33 40 

  21 24 30 34  

      22 9 20 26 27 28 

     23 17 20 32     

   24 18 19 21 25 30   

   25 15 16 24 26 29   

   26 9 22 25 28 

      27 20 22 28 33 

      28 22 26 27 29 33 35 38 

   29 25 28 30 37    

   30 21 24 29     

   31 34 36      

   32 20 23 40 41    

   33 20 27 28 35   

    34 21 31 36 42  

     35 28 33 38 44    

   36 31 34 39 42 46    

  37 29 30 38 43 45   

   38 28 35 37 43  

     39 36 46    

     40 20 32 41 47   

    41 32 40 47 

       42 34 36    

     43 37 38 44 45 48 

     44 35 43 48 49 

      45 37 43 48 

       46 36 39    

     47 40 41 

        48 43 44 45 49 

      49 44 45 48 

       Source: Anselin (1988) Table 12.2. 



 

 

 

7. Exploratory Spatial Data Analysis (ESDA) 

7.1 Overview 

The first use for the spatial weights matrix is in Exploratory Spatial Data Analysis (ESDA), 

which is a set of techniques aimed at visualising the spatial distribution of data, identifying 

'atypical localisation', detecting patterns of spatial association, that is clusters or hot spots and 

cold spots, and suggesting the presence of different spatial regimes, where data provide 

evidence of heterogeneity (Anselin, 1996). It is preliminary to, but informs formal regression 

modelling. 

Measures of spatial dependence or spatial autocorrelation are a way of evaluating the amount 

of clustering or randomness in the data. Unlike standard measures of concentration these 

measures impose an explicit geographic structure, which makes them capable of summarising 

clustering observed via visual inspection of a map and also capable of testing whether these 

clusters are significantly non-random.  

In order to determine if the values of a particular mapped variable (such as the crime rate) 

deviate from a pattern that would exist if they were randomly assigned, we require an index of 

comparison. Global measures of spatial autocorrelation are such an index, providing 

evidence of the presence or absence of a stable pattern of dependence across our whole 

dataset. There is a debate over how spatial autocorrelation can be best characterised, which 

we will not engage in here (see Cliff and Ord, 1973; Upton and Fingleton, 1985). 

Spatial statistics deploy spatial weight matrices, which formalise the level of interdependence 

between all pairs of regions in the system. Unlike in time-series data where data points are 

ordered contemporaneously, determining the order of observations in space is difficult as it is 

multidirectional and because it requires prior knowledge of the nature of dependence in the 

system. A ‘spatial order’ is typically imposed based on some prior assumption and the 

estimation of spatial autocorrelation is sensitive to this (Molho, 1995: 649). Following 

LeSage’s (2005) comments that the main aim of the weighting matrix is to incorporate some 

notion of proximity into standard statistical tests (and weighting structures that test complex 

assumptions about the nature of dependence can unnecessarily obscure the simple relationship 

embodied by Tobler’s Law) it is often reasonable to opt for the most simple conception of 

spatial interconnectedness, that is ‘first-order contiguity’ – neighbours defined on the basis of 

regions whose borders touch. In the following discussion we use rook contiguity as explained 

in Section 6. 

Common global measures (measures which assess spatial association across a whole dataset) 

of spatial association include; Moran’s I, Geary’s C and Global G. 

The global measures can be decomposed to provide local measures of spatial association - 

LISAs in the case of a Moran statistic Anselin (1995) and Local G in the case of the Getis-

Ord statistic (Ord and Getis, 1995). These measures provide more detailed information on the 

type of spatial association present and indicate the contribution from each region to the 

overall spatial association. Where regions form a cluster of unusually high values this has 

been termed a ‘hotspot’. Similarly, a ‘coldspot’ refers to a group of neighbouring regions who 

exhibit unusually low values. Hotspots and coldspots represent islands of heterogeneity, 

uncharacteristic deviations from a national spatial pattern and thus are of interest to 

researchers and policy-makers. 

In analysing geographically disaggregated data these measures represent a significant advance 

on standard measures of concentration (Theil, Gini, Coefficient of variation), because they 



 

 

explicitly incorporate spatial location. Most importantly spatial autocorrelation measures can 

evaluate the probability that concentrations of high and low values of some variable of 

interest occur by chance, thus the credibility of a purely visual interpretation of clustering (for 

instance via a choropleth map) is significantly advanced upon (Frank, 2003: 160). 

7.2 Global autocorrelation measures – Moran’s I statistic 

A standard measure of global spatial autocorrelation is provided by Moran's I (Moran, 1948). 

The Moran's I statistic provides an indication of the degree of linear association between the 

observation vector (x) and a vector of spatially weighted averages of neighbouring values 

(Wx), where W formalises the neighbourhood or contiguity structure of the dataset.  

The Moran’s I ranges from minus one (indicating perfect dispersion) to plus one (indicating 

perfect correlation) with a zero value corresponding to a random spatial pattern (no spatial 

autocorrelation). Negative (positive) values thus indicate negative (positive) spatial 

autocorrelation. 

The Moran I statistic is computed as: 

(5) 
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where R is the number of regions, Rb  is the sum of the weights and when the spatial 

weighting matrix is row-standardised it simplifies to R. The x is a variable of interest (say the 

crime rate) in region i (in deviations from the mean). The Moran I statistic is easily computed 

from the residuals of a regression on a constant. 

The Moran’s I statistic can be expressed as a standardised normal Z value for inference 

purposes. At the 5 per cent level of significance we reject the null of no spatial autocorrelation 

if the standardised Moran I statistic is greater than 1.96 or smaller than -1.96. 

Table 2 reports the Moran’s I statistics for crime, household income and housing values from 

the Columbus dataset, along with the standardised and p-values for each variable. The null 

hypothesis is that there is no spatial association. It is clear from the test statistics that the three 

variables exhibit strong spatial interaction and we can safely reject the null hypothesis. 

Significant positive dependence is present in all variables using simple first-order rook 

contiguity as the weighting scheme. This means, for example, that it is much more likely that 

regions with high (low) crime rates (income or housing values) will have neighbours with 

high (low) crime rates (income or housing values) than if the distribution of crime, income 

and housing values in Columbus, Ohio in 1980 were purely random. 

Table 2 Moran I statistics, Crime, Household Income and Housing Values (under normality) 

 Moran I statistic Standardised 

Deviate 

p-value 

Crime 0.52367021 5.4978 3.845e-08 

Income 0.43191278 4.5714 4.846e-06 

Housing Values 0.22425202 2.4746 0.01334 



 

 

The presence of spatial interaction in data samples suggests the need to quantify and model 

the nature of the spatial dependence in more detail. In the Section 8, we outline the taxonomy 

of spatial econometric models that can more formally explore the spatial interaction between 

the variables. However, we can also use other ESDA measures to further examine the nature 

of the spatial dependencies in the data in terms of spatial clusters with positive or negative 

spatial autocorrelation and spatial outliers. 

7.3 Local Measures of Spatial Association 

While our dataset reveals a globally significant trend towards clustering, global measures of 

spatial autocorrelation offer only an ‘average’ and can hide interesting micro-concentrations. 

To overcome this limitation, Local Indicators of Spatial Association (LISAs) have been 

developed. These indicate if one or more confined areas exhibit substantial deviation from 

spatial randomness. Local measures are particularly useful in large datasets where spatial 

association between observations is likely to show instability in the form of “local non-

stationarity, spatial regimes and spatial drift” (Anselin, 1996: 112). Anselin (2003: 99 says 

that “Local spatial autocorrelation analysis is based on the Local Moran LISA statistics … 

[which yield measures] … of spatial autocorrelation for each individual location”. 

There are several measures that have been developed to examine local spatial association. In 

this Chapter we will consider only two: (a) Moran Scatterplots; and (b) LISA cluster maps. 

7.4 Moran Scatterplots 

Local spatial instability is studied by means of the Moran scatterplot (Anselin, 1996), which 

plots standardised values of the spatial lag (Wz) against the original values (z). A linear 

regression line is added, which has Moran’s I as its slope and can be used to indicate the 

degree of fit – the extent to which the regression line reflects the overall pattern of association 

between Wx and x. Points that deviate from the Moran regression line may be important 

outliers or leverage points in the strong global spatial dependence observed for short and 

long-term unemployment. 

The Moran scatterplot also provides further information on the type of spatial dependence, 

other than whether spatial association is positive or negative. 

The four quadrants of the plot represent the four different types of spatial association: 

 Upper-right quadrant – high-high, positive autocorrelation, clustering of high values. 

 Lower-right quadrant – high-low, negative autocorrelation, outlier, high value among low 

neighbours. 

 Lower-left quadrant – low-low, positive autocorrelation, clustering of low values. 

 Upper-left quadrant – low-high, negative autocorrelation, outlier, low value among high 

neighbours. 

The graph scale is in terms of standardised Z values rather than raw data so that the mean of 

the variable is zero and the units become standard deviations.  The Moran regression line is 

usually displayed and the slope is the value of the Moran I statistic. 

Figures 14 to 16 show the Moran Scatter Plots for Crime, Household income and Housing 

Values, respectively. In each case, there are very few outliers in the dataset. There are many 

observations representing high-high and low-low clusters. 

 

 

 



 

 

Figure 14 Moran Scatter Plot, Crime 

 

 

Figure 15 Moran Scatter Plot, Household Income 

 

 

 

 



 

 

 

Figure 16 Moran Scatter Plot, Housing Values 

 

7.5 Local Indicators of Spatial Association (LISA) 

While the Moran scatterplot provides more detail on the type of spatial clustering, it does not 

report on the significance of such clustering. Local Indicators of Spatial Association (LISA) 

have been generated to do this. LISA serve two purposes in ESDA: they indicate local spatial 

clusters and they perform sensitivity analysis (identify outliers).  

Anselin (1995: 94) defines LISA as: 

“a. the LISA for each observation gives an indication of the extent of significant spatial 

clustering of similar values around each observation; and 

b. the sum of LISAs for all observations is proportional to a global indicator of spatial 

association.” 

As with global measures, LISAs test whether the observed spatial pattern of unemployment 

amongst SLAs is extreme or is likely or expected, given a random geographic distribution of 

long-term unemployment.  

The LISA statistic can be specified as follows (Le Gallo and Ertur, 2003): 

 



j

ttjij

tti

ti xw
m

x
I )(

)(
,

0

,

, 


 with 
n

x
m

tti

i

2

,

0

)( 
  (9) 

where tix ,  is the observation in the region i for the year t, t is the mean of observations across 

the regions in the year t and where the summation over j is such that only the neighbouring 

values are included. Positive values of Ii,t mean that there is a spatial cluster of similar values 

and negative values represent a spatial cluster of dissimilar values. 

 



 

 

There are various LISA available, but in this section we consider the cluster maps, which 

reveal “those locations with a significant Local Moran statistic classified by type of spatial 

correlation: bright red for the high-high association, bright blue for low-low, light blue for 

low-high, and light red for high-low … The high-high and low-low locations suggest 

clustering of similar values, whereas the high-low and low-high locations indicate spatial 

outliers” (Anselin, 2003: 100). The cluster maps show which regions are driving the global 

measures of spatial autocorrelation. 

Figure 17 shows the LISA cluster map for Crime in Columbus. The legend indicates the 

frequency of the neighbourhoods in each category. There are 18 neighbourhoods that exhibit 

statistically significant Moran I statistics. The clustering is very pronounced. The high crime 

rate neighbours are concentrated in the inner city neighbourhoods, while the low crime rate 

neighbourhoods are clustered around the periphery of the city. Figure 18 shows the LISA 

cluster map for Household Income, which reveals a similar pattern and one consistent with 

our initial hypothesis – that high-income areas will have low crime rates and that the behavior 

that drives high or low crime crosses neighbourhood boundaries such that clusters form. 

Figure 17 LISA cluster map for Crime 

 

 

 

 

 

 

 

 

 



 

 

Figure 18 LISA cluster map for Household Income 

 

8. Introduction to spatial econometric models 

8.1 A taxonomy of spatial econometric models 

To further investigate the way in which the crime rate is influenced by household income and 

housing values we need to perform more formal econometric modelling. The ESDA has 

confirmed that there is spatial dependence in the data and the use of OLS is likely to be 

problematic. In this section, we outlined the various spatial econometric models that are 

available to researchers seeking to investigate spatially dependent datasets. 

The general spatial autoregressive econometric model is the starting point: 

(6) 1

2

2~ (0, )N
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u W u ε

ε I

 

where y is a n x 1 dependent variable vector , X is a n x k explanatory variables matrix 

(including a constant) with an associated k x 1 vector of parameters , and  is a n x 1 random 

errors vector. W1 and W2 are n x n spatial weight matrices and Wij is the spatial weight of 

region i in terms of region j. Table 3 outlines the family of spatial models that can be derived 

by imposing various restrictions on the general model shown as Equation (6). 

The interpretation of the parameters in  has similarities with the interpretation of coefficients 

in a dynamic auto-regressive dynamic lag (ARDL) time series model, where we distinguish 

between short-run and long-run effects. In the spatial case, the analogy is captured by the 

concept of the spatial multiplier. We can rewrite the reduced form mean equation as: 

(7)    
1

1 


  y W βx ε  



 

 

where for simplicity we assume well-behaved errors. The marginal effect of an increase in 

one of the columns of X is thus: 
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The term  
1




 WI  is the spatial multiplier (see Anselin, 2002). 

We can think about this term as spreading the effects of any shocks to the dependent variable 

across (in this context) space to neighbouring regions. There are thus two effects embedded in 

the spatial multiplier. If we decompose the spatial multiplier (by geometric expansion, given

1  ) we get: 

(9) 2 2y

x
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So the first term ( Iβ ) is termed the direct effect of a marginal change of x on y (operating via 

the main diagonal). The second term is a matrix with zero values on the main diagonal and the 

off-diagonal elements capture the local indirect or spillover effects arising from the direct 

shocks. The third term (and all subsequent higher order terms) capture the induced effects 

which spill-over into the neighbouring regions (see Abreu et al., 2004). 

In other words, the spatial lag model is a way of capturing interdependency between the data 

points across space (or across any cross sectional data set where the observations are not 

independent). 

  



 

 

Table 3 Taxonomy of spatial econometric models 

Model Specification Restrictions Comments 

Ordinary Least 

Squares 
1

2~ (0, )nN





 y W y ε

ε I

 W1 = 0 

W2 = 0 

No spatial effects 

First-order spatial 

autoregressive 

(FAR) model 

1

2~ (0, )nN





 y W y ε

ε I

 X = 0 

W2 = 0 

 

Mixed 

autoregressive-

spatial 

autoregressive 

(SAR) model 

1

2~ (0, )N





  y W y Xβ ε

ε I

 W2 = 0  measures the 

degree of spatial 

dependence. 

In this study it is the 

average influence of 

unemployment rates 

in neighbouring 

regions on the 

unemployment rate 

in region i. 

Spatial 

autocorrelation 

(SEM) model 2

2~ (0, )N





 

 

y Xβ u

u W u ε

ε I

 W1 = 0 Spatial 

autocorrelation may 

be due to 

measurement 

problems (rather 

than endogenous 

effects occurring 

between regions). 

Spatial Durbin 

(SDM) model 
1 1

2~ (0, )N





  
1

y W y Xβ WXγ +ε

ε I

 W2 = 0 Spatially weighted 

term added to the 

FAR model. The 

parameters ρ and γ 

measure the strength 

of the spill-over 

effects. One or more 

X variables can be 

spatially lagged. 

General spatial 

model (SAC) 
1

2

2~ (0, )N







  

 

y W y Xβ u

u W u ε

ε I

  Combines the SAR 

and SEM models.  

measures the degree 

of spatial residual 

correlation. 

Source: Anselin, 1988. 

8.2 Model selection methods 

The issue of model selection techniques (specification strategies) remains contentious in the 

spatial econometric literature although some consensus is emerging. One viewpoint is that the 

researcher should not engage in a specification search but rather pre-filter the data, netting out 

any inherent spatial dependence (for example, Getis, 1995). The spatially-filtered data can 

then be approached using conventional OLS estimation. 



 

 

The alternative approach to ‘filtering’ can be cast, once again, in the broader debate common 

among time series econometricians. Two options appear possible. First, should we proceed 

with a specific-to-general approach (the so-called ‘classical approach’), which begins with the 

simplest OLS regression and then uses appropriate tests of restrictions (Lagrange Multiplier 

tests) to assess the statistical validity of a range of ‘added variables’ including the presence of 

spatial dependence? In this case, the specification search is less transparent and the researcher 

would ultimately choose the model with some highest test value. For example, Anselin (1992) 

suggests that LM tests could provide the basis for the choice between the SEM and the SAR 

model. We can test whether  = 0 in the SEM model and whether  = 0 in the SAR model. 

The model with the largest test statistic would be rejected. 

Second, as an alternative, we might follow the Hendry general-to-specific approach, where 

the researcher deliberately sets out with an over-parameterised model, which in this context 

would be include all the spatial effects, and then ‘test down’ using valid simplifying 

restrictions to the parsimonious form. Florax et al., (2003) used Monte Carlo simulation to 

demonstrate that the classical approach provides for better inference than the Hendry 

approach. 

Other issues regarding parsimony of the spatial weights matrix also arise – in the sense, that 

the asymptotic properties of the estimators are unclear after a certain number of non-zero 

elements is included.  

8.3 Spatial autocorrelation diagnostic tests 

We employ the standard spatial diagnostic tests to test for spatial autocorrelation in the 

residuals of the OLS regression and the SAR models. These tests are outlined in LeSage 

(1999) and are summarised as follows: 

Moran I-statistic (Cliff and Ord, 1981) is written as: 

(10) / I e We e e  

where e is the regression residuals. The I statistic has an asymptotic distribution that 

corresponds to the standard normal distribution after subtracting the mean and dividing by the 

standard deviation of the statistic (Anselin, 1988: 102). We thus interpret the standardised 

version as rejecting the null of no spatial autocorrelation if its value exceeds 1.96 (at the 5 per 

cent level). 

Likelihood ratio test compares the LR from the OLS model to the LR from the SEM model 

and this statistic is asymptotically distributed as
2 (1) . We reject the null of no spatial 

autocorrelation if the test statistic exceeds 3.84 (at the 5 per cent level) and 6.635 (at the 1 per 

cent level). 

Wald test (Anselin, 1988: 104) is asymptotically distributed as
2 (1) . We reject the null of no 

spatial autocorrelation if the test statistic exceeds 3.84 (at the 5 per cent level) and 6.635 (at 

the 1 per cent level). 

Lagrange Multiplier (LM) test (Anselin, 1988: 104) uses the OLS residuals e and the spatial 

weight matrix W, and is computed as: 
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Spatial error residuals LM test (Anselin, 1988: 106) is based on the residuals of the SAR 

model to determine “whether inclusion of the spatial lag term eliminates spatial dependence in 



 

 

the residuals of the model” (LeSage, 1999: 75). The test requires the spatial lag parameter r is 

non-zero in the model. The test produces a LM statistic, which is asymptotically distributed as
2 (1) . As before, we reject the null of no spatial autocorrelation if the test statistic exceeds 

3.84 (at the 5 per cent level) and 6.635 (at the 1 per cent level). 

9. Results and Analysis 

Table 4 reports the various regression results using the R software package spdep. We 

compare the OLS, SAR and SEM models in this Chapter. The numbers in parentheses below 

the coefficient estimates are t-statistics (for OLS) and z-values for the Maximum Likelihood 

(ML) spatial equations. The first column of results reports the estimates from the OLS 

regression, which gives no special attention to the spatial properties of the data. The crime 

rate is regressed on a constant term, income (INC) and housing values (HOVAL). 

The estimated coefficients on the income and housing values variables are highly significant 

(t-statistics above 2) and of the hypothesised signs. That is, the higher is the income and the 

housing values of a neighbourhood; the lower is the expected crime rate. The model would 

also predict, for example, that if household incomes rose in a neighbourhood, the crime rate 

would be expected to fall. 

The R
2
 statistic indicates the goodness of fit of the equation (how strong the relationship is 

between the variables). The adjusted R
2
 statistic controls for loss of degrees of freedom as 

more regressors are added and is also above 0.5. Taken together the OLS equation is a 

reasonable fit to the data. In professional practice, we would also report the test statistics for a 

range of advanced diagnostic tests, which aim to examine the assumptions we made about the 

residuals. These would include tests for normality, heteroscedasticity and serial correlation. 

We ignore these statistics in this Chapter to focus only on the issue of spatial dependence. 

How can we tell if there is spatial autocorrelation in the error term of this estimated equation? 

After running the OLS regression we would subject the estimated residuals to a battery of 

tests for spatial autocorrelation (as outlined in Section 8.4). Table 1 shows the results for the 

standardised normal Moran z-statistic and the LM       statistic. Both are high significant 

indicating the strong presence of spatial autocorrelation in the OLS residuals. 

The second column of results shows the maximum likelihood estimation results for Mixed 

autoregressive-spatial autoregressive (SAR) model, which adds the spatial lag term to the 

explanatory variables. The spatial lag coefficient is (reported in the Table as rho) and the 

number in parenthesis immediately below it is the standardised z-value. 

First, note that the estimated coefficients retain their hypothesised signs but the size of the 

coefficient on income is now much lower. There is very little difference in the coefficient on 

Housing Values. Second, the coefficient on the spatial lag (Rho) is highly significant with an 

asymptotic z-value of 3.69 and positive. This indicates that there is significant spatial 

dependence between rook-contiguous crime rates such that a higher rate in region i will tend 

to push up the rate in region j, independent of the impact of household income and housing 

values. 

A Moran’s I test under normality assumptions on the SAR equation residuals produced a p-

value of 0.5938 indicating that once the spatially lagged dependent variable was included in 

the model there is no further evidence of spatially autocorrelated errors. 

The OLS equation residuals exhibited strong spatial autocorrelation and despite the finding 

that there was no further evidence of spatially autocorrelated errors once the spatially lagged 

dependent variable was included (the SAR) model, it is sometimes useful to estimate the 

Spatial autocorrelation (SEM) model. The results are in the third column. 



 

 

Table 4 Spatial econometric results for dependent variable, CRIME 

 

OLS SAR SEM 

  

ML ML 

Constant 68.62 46.85 61.05 

 

(14.49) (6.41) (11.49) 

    Income -1.60 -1.07 -1.00 

 

(4.78) (3.45) (2.95) 

    Housing Values -0.27 -0.27 -0.31 

 

(2.65) (3.00) (3.33) 

    
    Rho 

 

0.40 

 Asymptotic Z 

 

(3.35) 

 
    Lambda 

  

0.52 

Asymptotic Z 

  

(3.69) 

    

R
2
 0.552 

  Adjusted R
2
 0.533   

Log likelihood  -183.1683 -184.1552 

    Spatial Autocorrelation Tests 

   Standardised Moran z-statistic 2.952 

  LM test x

(1) 5.723   

    ML is Maximum Likelihood estimation. 

10. Conclusion 

Typically social and economic data have some spatial dimension. Statistically, it is traditional 

for regionally based cross-sectional data to be viewed as conceptually identical to cross-

sectional data on individuals or businesses at a single location. However, spatially adjacent 

observations are likely to exhibit spatial interdependence, owing to dynamics (knowledge 

flows, trade flows, commuting and social spill-overs), which accompany proximity. We 

consider that observations that are near to each other in space are more likely to be co-related 

in some way than more distant observations. 

Spatial autocorrelation refers to the formal measure of the extent near and distant things are 

related. Ignoring dependence between neighbouring regions will lead to problematic 

regression results. In the last twenty years, a range of spatial regression techniques have been 

developed to measure latent forces of interaction and handle data that violate standard 

statistical assumptions of independence. 

Using the Columbus, Ohio dataset to demonstrate the concepts involved, we found that the 

Ordinary Least Squares (OLS) regression of the crime rate on household income and housing 

values revealed significant spatial autocorrelation in the residuals. The spatial dependence 



 

 

likely indicates the presence of interactions between spatially proximate regions (keeping in 

mind sensitivities to model misspecification and the weighting structure employed). In that 

context, the spill-overs between regions will magnify local responses. 

In this Chapter, we have provided an elementary introduction to the problem of spatial 

interdependence and outlined ways of detecting it and resolving it, in order to produce robust 

statistical analysis.  
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